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Notations and symbols

Let𝐴 be a C
∗
-algebra. We write M𝑛 (𝐴) for the C

∗
-algebra of (𝑛×𝑛)-matrices with entries in𝐴. We writeM(𝐴)

for multipliers of 𝐴, andUM(𝐴) for unitary multipliers of 𝐴. We write Q(𝐴) for the corona algebraM(𝐴)/𝐴
which fits in the extension 𝐴↣M(𝐴) ↠ Q(𝐴). By an extension of C

∗
-algebras 𝐴↣ 𝐵 ↠ 𝐶 we shall mean a

short exact sequence such that 𝐴 ⊆ 𝐵 is a closed ideal, and 𝐶 is isomorphic to the quotient C
∗
-algebra 𝐵/𝐴.

We write I𝐴 := C( [0, 1], 𝐴) for the cylinder of 𝐴, S𝐴 := C
0
((0, 1), 𝐴) for the suspension of 𝐴 and C𝐴 :=

C
0
((0, 1], 𝐴) for the cone of 𝐴.
Let 𝐸 be a Hilbert 𝐴-module. We write K𝐴 (𝐸) for the C

∗
-algebra of compact operators on 𝐸, and B𝐴 (𝐸) for

the C
∗
-algebra of bounded adjointable operators on 𝐸. In different literatures the authors may have different

notations for K𝐴 (𝐸) (e.g. End
0

𝐴 (𝐸)) and for B𝐴 (𝐸) (e.g. End𝐴 (𝐸) or L𝐴 (𝐸)). When 𝐸 is merely a separable

Hilbert space (=Hilbert C-module), we will omit C and 𝐸 by writing K and B for the C
∗
-algebra of compact

and bounded operators thereon.

The colour used in the colorboxes of this manuscript is F4F0EC . Can you guess why I choose it?

1

mailto:y.li@math.leidenuniv.nl


Contents

1 K-theory of C∗-algebras I 5
1.1 Definition of K

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Definition of K
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Properties of K
0
and K

1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Homotopy invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Long exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 K-theory of C∗-algebras II 8
2.1 K-theory as a homology theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Bott periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Thom isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Examples of K-theory groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Hilbert C∗-modules 13
3.1 Inner-product modules and Hilbert C

∗
-modules . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Examples of Hilbert C
∗
-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Adjointable operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Operations on Hilbert C
∗
-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Exterior tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Interior tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.3 Pushout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Kasparov’s stablisation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 KK-theory: Kasparov’s picture 19
4.1 Definition of Kasparov modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Operations on Kasparov modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.3 Interior tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.4 Pushout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Kasparov’s KK-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Homotopies of Kasparov modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.2 Operator homotopies of Kasparov modules . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.3 Definition of KK-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 KK-theory: Cuntz’s picture 24
5.1 Cuntz’s KK

h
-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 From quasihomomorphisms to Kasparov modules . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.2 Pushout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



6 Properties and examples of KK-theory 30
6.1 What is KK-theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Examples of Kasparov modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.1 Kasparov modules from
∗
-homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.2 K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.3 K-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Properties of KK-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.2 Homotopy invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.4 Bott periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.5 Long exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 The Kasparov product 36
7.1 The Kasparov product in the bounded picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 The unbounded picture of KK-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 The Kasparov product in the unbounded picture . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3.1 The exterior Kasparov product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.3 The interior Kasparov product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Extension of C∗-algebras and KK-theory 44
8.1 Busby invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.2 The Ext group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.3 The isomorphism between KK
1
and Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Categorical aspects of KK-theory 50
9.1 KK-theory as a universal functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.2 KK-theory as a triangulated category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.1 Universal coefficient theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.2 Triangulated categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2.3 Proof of the Universal Coefficient Theorem . . . . . . . . . . . . . . . . . . . . . . . . 58

10 Finite summability in K-homology 60
10.1 Historical review of K-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.1.1 Abstract definition of K-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.1.2 Atiyah’s approach (1970s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.1.3 Brown–Douglas–Fillmore theory (1960s) . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.1.4 Kasparov’s approach (1970s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.2 Finite summability in K-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10.2.1 Smooth extensions (Douglas, 1980s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10.2.2 Finite summable Fredholm modules (1980s) . . . . . . . . . . . . . . . . . . . . . . . . 62

11 E-theory 64
11.1 Asymptotic morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11.1.1 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.1.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.1.3 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11.2 E-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11.2.1 E-theory as a universal functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3



12 K-theory of graph C∗-algebras 68
12.1 Graph C

∗
-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12.2 K-theory of graph C
∗
-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

12.2.1 Dual Pimsner–Voiculescu sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12.2.2 Construction of the graph 𝐸 ⋊
1

Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

13 K-theory of Cuntz–Pimsner algebras 73
13.1 Toeplitz–Pimsner algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.2 Cuntz–Pimsner algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13.3 Pimsner–Voiculescu exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References 76

4



February 15, 2022

K-theory of C∗-algebras I
Speaker: Jack Ekenstam (Leiden University)

A standard reference is [13, Chapter 4].

1.1 Definition of K0

Let 𝐴 be a unital C
∗
-algebra.

Definition 1.1. An element 𝑢 ∈ 𝐴 is unitary if 𝑢
∗
𝑢 = 1 = 𝑢𝑢

∗
. A unitary over 𝐴 is a unitary in M𝑛 (𝐴). Two

unitaries 𝑢, 𝑣 ∈ 𝐴 are homotopic if there is a continuous path of unitaries connecting them.

Example 1.2. If 𝑢 ∈ M𝑛 (C) is unitary. Then 𝑢 = 𝑣𝐷𝑣
∗
for some unitary diagonal matrix 𝐷 . We use a “rotation”

on each diagonal entry to connect 𝐷 with 1𝑛 . Then we obtain a homotopy 𝑢 ∼ 𝑣𝐷𝑣
∗ ∼ 𝑣𝑣

∗ ∼ 1𝑛 .

Definition 1.3. An element 𝑝 ∈ 𝐴 is a projection if 𝑝 = 𝑝
∗
= 𝑝

2

. Two projections 𝑝, 𝑞 are unitarily equivalent if
there exists a unitary 𝑢 ∈ 𝐴 such that 𝑝 = 𝑢𝑞𝑢

∗
. Two projections 𝑝, 𝑞 ∈ 𝐴 are homotopic if there is a continuous

path of projections connecting them.

Example 1.4. If 𝑝, 𝑞 ∈ M𝑛 (C) are projections of the same rank𝑘 . Choose two basis such that 𝑝 and𝑞 are

(
1𝑘

0𝑛−𝑘

)
under the corresponding basis. Then a change of basis makes 𝑝 and 𝑞 unitarily equivalent.

Conversely: 𝑝 and 𝑢𝑝𝑢
∗
have the same rank.

Definition 1.5. K
0
(𝐴) is the abelian group generated by homotopy classes of projections over𝐴, with relations

1. [0] = 0.

2. [𝑝 + 𝑞] = [𝑝 ⊕ 𝑞].

Remark 1.6. Any 𝑥 ∈ K
0
(𝐴) can be written as [𝑝] − [𝑞]. And we can take 𝑞 = [1𝑘 ] using the following

proposition:

Proposition 1.7. If 𝑝, 𝑞 ∈ 𝐴 are projections with 𝑝𝑞 = 0 = 𝑞𝑝 . Then [𝑝 + 𝑞] = [𝑝] + [𝑞].

Proof. We need to find a homotopy 𝑝 ⊕ 𝑞 ∼ (𝑝 + 𝑞) ⊕ 0 in M
2
(𝐴). This is given by(

𝑝 + 𝑞 cos
2

𝑡 −𝑞 sin 𝑡 cos 𝑡

𝑞 sin 𝑡 cos 𝑡 𝑞 sin
2

𝑡

)
.

Now for the remark: take 𝑥 = [𝑝] − [𝑞] = [𝑝 ⊕ (1 − 𝑞)] − [1]. □

Proposition 1.8. If 𝑝, 𝑞 ∈ 𝐴 are projections with ∥𝑝 − 𝑞∥ < 1. Then there exists a unitary 𝑢 such that 𝑝 = 𝑢𝑞𝑢
∗.

Proof. Consider 𝑥 = 𝑞𝑝 + (1 − 𝑞) (1 − 𝑝). Then 𝑥𝑝 = 𝑞𝑝 = 𝑞𝑥 . One computes that

𝑥 − 1 = 2𝑞𝑝 − 𝑞 − 𝑝 = 2𝑞𝑝 − 𝑞2 + 𝑞 − 𝑝 = (2𝑞 − 1) (𝑝 − 𝑞) .

Notice that 2𝑞 − 1 is a self-adjoint unitary, so has norm 1; ∥𝑝 − 𝑞∥ < 1 by assumption. Then

∥𝑥 − 1∥ < ∥2𝑞 − 1∥∥𝑝 − 𝑞∥ < 1.

So 𝑥 is invertible. Define 𝑢 = 𝑥 (𝑥∗𝑥)−1/2

. Some functional calculus shows that 𝑝 commutes with (𝑥∗𝑥)−1/2

.

Then

𝑢𝑝 = 𝑥 (𝑥∗𝑥)−1/2

𝑝 = 𝑥𝑝 (𝑥∗𝑥)−1/2

= 𝑞𝑥 (𝑥∗𝑥)−1/2

= 𝑞𝑢. □

Corollary 1.9. If 𝑡 ↦→ 𝑝𝑡 is a path of projections. Then there exists a path of unitaries 𝑡 ↦→ 𝑢𝑡 such that 𝑝𝑡 = 𝑢𝑡𝑝0
𝑢
∗
𝑡 .
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Proof. By cutting the path into line segments which are small enough. □

Lemma 1.10. If 𝑢 ∈ 𝐴 is unitary. Then 𝑢 ⊕ 𝑢∗ ∈ M
2
(𝐴) is also unitary and 𝑢 ⊕ 𝑢∗ ∼ 1.

Proof. 𝑡 ↦→
(
𝑢 cos 𝑡 − sin 𝑡
sin 𝑡 𝑢

∗
cos 𝑡

)
defines a homotopy

( 𝑢
𝑢
∗
)
∼

( −1

1

)
. Relacing 𝑢 by 1 defines a homotopy

(
1

1

)
∼( −1

1

)
. □

Corollary 1.11. If 𝑝, 𝑞 ∈ 𝐴 are projections which are unitarily equivalent. Then [𝑝] = [𝑞] in K
0
(𝐴).

Proof.

[𝑝] =
[(
𝑝

0

)]
=

[(
𝑢

𝑢
∗

) (
𝑝

0

) (
𝑢
∗

𝑢

)]
=

[(
𝑞

0

)]
= [𝑞] . □

Example 1.12. Let 𝑝 and 𝑞 be matrices over C of the same rank. Then they are unitarily equivalent, hence

defines the same class in K
0
.

Remark 1.13. K
0
is functorial: if 𝜙 : 𝐴 → 𝐵 is a

∗
-homomorphism. Then 𝜙∗ : K

0
(𝐴) → K

0
(𝐵) by acting

entrywise.

Now consider the case of non-unital C
∗
-algebras.

Definition 1.14. Let 𝐴 be non-unital. Let �̃� be the unitalisation of 𝐴. That is, �̃� = 𝐴 × C with the prod-

uct (𝑎, 𝜆) (𝑏, 𝜇) = (𝑎𝑏 + 𝜆𝑏 + 𝜇𝑎, 𝜆𝜇). 𝐴 is a closed two-sided ideal of �̃�: 𝐴 → 𝐴 × {0} ⊆ �̃�. The quotient

is �̃�/𝐴 � C. This induces a map 𝑞∗ : K
0
(�̃�) → K

0
(C). Define

K
0
(𝐴) := ker𝑞∗.

1.2 Definition of K1

Let 𝐴 be a unital C
∗
-algebra.

Definition 1.15. K
1
(𝐴) is the abelian group generated by homotopy classes of unitaries over 𝐴 with relations:

1. [1] = 0.

2. [𝑢] + [𝑣] = [𝑢 ⊕ 𝑣].

Proposition 1.16. If 𝑢, 𝑣 ∈ 𝐴 are unitaries. Then [𝑢] + [𝑣] = [𝑢𝑣].

Proof.
[𝑢𝑣] = [𝑢𝑣 ⊕ 1] = [(𝑢 ⊕ 1) (𝑣 ⊕ 1)] = [(𝑢 ⊕ 1) (1 ⊕ 𝑣)] = [𝑢 ⊕ 𝑣] .

Here we use a rotation to connect 𝑣 ⊕ 1 and 1 ⊕ 𝑣 . □

Remark 1.17. For non-unital C
∗
-algebras: K

1
(𝐴) = ker(K

1
(�̃�→ K

1
(C))). But as K

1
(𝐶) = 0 (since every unitary

is homotopic to the identity matrix). Then K
1
(𝐴) � K

1
(�̃�).

An alternative definition of K
1
is K

1
(𝐴) := K

0
(S𝐴) where S𝐴 := C

0
((0, 1), 𝐴).

1.3 Properties of K0 and K1

1.3.1 Homotopy invariance

Definition 1.18. A homotopy of
∗
-homomorphisms 𝐴→ 𝐵 is a family of

∗
-homomorphisms 𝜙𝑡 : 𝐴→ 𝐵 such

that for all 𝑎 ∈ 𝐴: 𝑡 ↦→ 𝜙𝑡 (𝑎) is norm-continuous.

Two
∗
-homomorphisms 𝜙,𝜓 : 𝐴 ⇒ 𝐵 are homotopic (denoted by 𝜙 ∼ 𝜓 ) if they are connected by a

homotopy.

Remark 1.19. If 𝜙,𝜓 : 𝐴 ⇒ 𝐵 are homotopic. Then 𝜙∗ = 𝜙∗ : K
0
(𝐴) → K

0
(𝐵) and 𝜙∗ = 𝜙∗ : K

1
(𝐴) → K

1
(𝐵).

Definition 1.20. A ∗-homomorphism𝜙 : 𝐴→ 𝐵 is a homotopy equivalence if there exist a ∗-homomorphism𝜓 : 𝐵 →
𝐴 such that 𝜙 ◦𝜓 and𝜓 ◦ 𝜙 are both homotopic to the identity map.

By homotopy invariance: a homotopy equivalence induces an isomorphism in both K
0
and K

1
.

6



1.3.2 Stability

Lemma 1.21. For any 𝑛 ∈ N, 𝐴→ M𝑛 (𝐴) given by

𝑎 ↦→
©«
𝑎 0

0 0

. . .

ª®®¬
induces an isomorphism on K

0
and K

1
.

Proof. Obviously it induces an isomorphism on K
0
. For K

1
: notice that

S(M𝑛 (𝐴)) = C
0
(0, 1) ⊗ M𝑛 ⊗ 𝐴 = M𝑛 (S𝐴) .

So

K
1
(𝐴) � K

0
(S𝐴) � K

0
(M𝑛 (S𝐴)) � K

0
(S(M𝑛 (𝐴))) = K

1
(M𝑛 (𝐴)) . □

Proposition 1.22. If 𝐴
1
⊆ 𝐴

2
⊆ · · · are C

∗-subalgebras of 𝐴 such that
⋃

𝑛 𝐴𝑛 = 𝐴. Then

lim

→
K

0
(𝐴𝑖) � K

0
(𝐴), and lim

→
K

1
(𝐴𝑖) � K

1
(𝐴) .

Example 1.23. We have K
0
(C) � Z induced by 𝑝 ↦→ rank(𝑝) and K

1
(C) = 0 because every unitary matrix is

homotopic to identity. Since K =
⋃

𝑛 M𝑛 , we have K
0
(K) � Z and K

1
(K) = 0.

A similar statement shows that K
0
(𝐴) � K

0
(𝐴 ⊗ K) and K

1
(𝐴) � K

1
(𝐴 ⊗ K) for all 𝐴.

Definition 1.24. 𝐴 and 𝐵 are stably isomorphic if 𝐴 ⊗ K � 𝐵 ⊗ K.

1.3.3 Long exact sequence

Let 𝐽
𝑖
↣ 𝐴

𝜋
↠ 𝐴/𝐽 be an extension of C

∗
-algebras. There is a 6-term long exact sequence

K
0
(𝐽 ) K

0
(𝐴) K

0
(𝐴/𝐽 )

K
1
(𝐴/𝐽 ) K

1
(𝐴) K

1
(𝐽 ) .

Lemma 1.25.
K

0
(𝐽 )

𝑖∗−→ K
0
(𝐴)

𝜋∗−−→ K
0
(𝐴/𝐽 )

is exact in the middle.

Proof. By functoriality 𝜋∗◦𝑖∗ = 0. This means im 𝑖∗ ⊆ ker𝜋∗. For the other way: if 𝑥 ∈ ker𝜋∗ with 𝑥 = [𝑝]−[1𝑛]
for some 𝑝 . Then [𝜋 (𝑝)] = [1𝑛], so 𝜋 (𝑝) and 1𝑛 are unitarily equivalent. Write(

𝑢

𝑢
∗

) (
𝜋 (𝑝) 0

0 0

) (
𝑢
∗

𝑢

)
= 1.

A result in C
∗
-algebras shows that

( 𝑢
𝑢
∗
)
lifts to a unitary in 𝐴. Then 𝑣𝑝𝑣

∗ ≡ 1𝑛 mod 𝐽 . So [𝑝] ∈ im 𝑖∗.
For K

1
: use that 𝐴 ↦→ S𝐴 is exact. □

Definition 1.26. Let 𝜙 : 𝐴→ 𝐵 be a
∗
-homomorphism. The mapping cone of 𝜙 is the C

∗
-algebra

{(𝑎, 𝑓 ) ∈ 𝐴 × C( [0, 1], 𝐵) | 𝑓 (0) = 0, 𝑓 (1) = 𝜋 (𝑎)}.

Denote it by C𝜙 .

There is an extension

S(𝐴/𝐽 )↣ C𝜋 ↠ 𝐴.

We will see that K
0
(C𝜋 ) � K

0
(𝐽 ).
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February 22, 2022

K-theory of C∗-algebras II
Speaker: Yuezhao Li (Leiden University)

In this section, we establish a homological viewpoint of K-theory following [24, Chapter 11]: it is a homology

theory of C
∗
-algebras. This is in parallel with the standard algebraic topology of spaces, justifying the idea

that C
∗
-algebras are noncommutative spaces. Moreover, K-theory is universal among all stable homological

functors. A somewhat surprising outcome is that K-theory, along with all such functors, automatically satisfies

Bott periodicity. This was first observed by Cuntz in [8].

2.1 K-theory as a homology theory

What is K-theory? In the previous talk we have seen the definitions in detail. Now we turn to an algebraic

topologist’s viewpoint. K-theory is a homology theory of C
∗
-algebras. Let C∗Alg be the category of C

∗
-algebras

with
∗
-homomorphisms as arrows, and Ab be the category of abelian groups.

Definition 2.1. A functor 𝐹 : C∗Alg→ Ab is called a homological functor if 𝐹 is

• Half-exact: If 𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄 is an extension of C

∗
-algebras, then 𝐹 (𝐼 )

𝐹 (𝑖 )
−−−→ 𝐹 (𝐸)

𝐹 (𝑞)
−−−→ 𝐹 (𝑄) is exact in the

middle.

• Homotopy invariant: If 𝑓 , 𝑔 : 𝐴 ⇒ 𝐵 are homotopic then 𝐹 (𝑓 ) = 𝐹 (𝑔).

K
0
is a homological functor. We want to turn it into a homology theory of C

∗
-algebras.

Definition 2.2. Ahomology theory ofC
∗
-algebras is a collection of homotopy invariant functors {𝐹𝑛 : C∗Alg→

Ab}𝑛∈Z (or {𝐹𝑛 : C∗Alg→ Ab}𝑛∈N) such that if

𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄

is an extension of C
∗
-algebras, then there is a collection of natural maps

{𝜕𝑛 : 𝐹𝑛 (𝑄) → 𝐹𝑛−1
(𝐼 )}𝑛∈Z ( or {𝜕𝑛 : 𝐹𝑛 (𝑄) → 𝐹𝑛−1

(𝐼 )}𝑛∈N )

called boundary maps, such that the following sequence

· · · → 𝐹𝑛 (𝐼 )
𝐹𝑛 (𝑖 )−−−−→ 𝐹𝑛 (𝐸)

𝐹𝑛 (𝑞)−−−−→ 𝐹𝑛 (𝑄)
𝜕𝑛−−→ 𝐹𝑛−1

(𝐼 ) → · · ·

is exact.

A homology theory is called half-infinite if 𝑛 ∈ N, and infinite if 𝑛 ∈ Z. Given a half-infinite homology

theory, we do not know the exactness on one end. This does not happen for K-theory due to Bott periodicity.

Our goal is to construct a (half-infinite) homology theory out of K
0
, and extend to an infinite one using Bott

periodicity.

Theorem 2.3. Let 𝐹 : C∗Alg→ Ab be a homological functor. Define

𝐹𝑛 := 𝐹 ◦ S
𝑛
,

where S is the suspension functor. Then {𝐹𝑛 : C∗Alg→ Ab}𝑛∈N is a homology theory.

Sketch of the proof. Let 𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄 be an extension. The half-exactness of 𝐹 and exactness of S imply

that 𝐹𝑛 (𝐼 ) → 𝐹𝑛 (𝐸) → 𝐹𝑛 (𝑄) are exact in the middle. It suffices to construct the boundary maps. We only

construct them but do not prove their exactness properties. Define 𝐼 → C𝑞 by 𝑥 ↦→ (𝑥, 0). One can show that

it induces an isomorphism 𝐹
0
(𝐼 ) �−→ 𝐹

0
(C𝑞) using both the homotopy-invariance and half-exactness of 𝐹 .
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There is an injective map 𝑗 : S𝑄 ↣ C𝑞 by sending 𝑓 ↦→ (0, 𝑓 ). (The quotient C𝑞/S𝑄 is isomorphic to 𝐸).

The boundary map is the composition

𝐹
1
(𝑄) = 𝐹

0
(S𝑄)

𝐹
0
( 𝑗 )
−−−−→ 𝐹

0
(C𝑞)

�−→ 𝐹
0
(𝐼 ) . □

Since K
0
is a homological functor. The above construction applies to K-theory and yields a long exact

sequence. Notice that our already defined K
1
fits in the long exact sequence as well.

Corollary 2.4. Let 𝐹 : C∗Alg→ Ab be a homological functor. Then it is split-exact. That is, if

𝐼 𝐸 𝑄
𝑖 𝑞

𝑠

is a split extension. Then the sequence

𝐹 (𝐼 ) 𝐹 (𝐸) 𝐹 (𝑄)𝐹 (𝑖 ) 𝐹 (𝑞)

is exact.

Proof. Since 𝐹 is half-exact, the sequence is exact in the middle. It suffices to show that 𝐹 (𝑖) is injective and 𝐹 (𝑞)
is surjective. 𝐹 (𝑞) is surjective because 𝐹 (𝑠) is a splitting. For the injectivity of 𝐹 (𝑖), notice that 𝐹

1
(𝑞) is also

surjective where 𝐹
1

:= 𝐹 ◦ S. The long exact sequence therefore implies the boundary map 𝐹
1
(𝑄) 𝜕−→ 𝐹

0
(𝐼 ) is

the zero map. Then the exactness at 𝐹
0
(𝐼 ) implies 𝐹 (𝑖) is injective. □

2.2 Bott periodicity

Bott periodicity is the following theorem

Theorem 2.5 (Bott periodicity). There are natural isomorphisms K𝑛+2 � K𝑛 for all 𝑛.

As a consequence, an extension 𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄 of C

∗
-algebras gives an induced six-term cyclic exact sequence

K
0
(𝐼 ) K

0
(𝐸) K

0
(𝑄)

K
1
(𝑄) K

1
(𝐸) K

1
(𝐼 ),

𝑖∗ 𝑞∗

exp
ind

𝑞∗ 𝑖∗

where the boundary map ind : K
1
(𝑄) → K

0
(𝐼 ) is usually called the index map. The map exp : K

0
(𝑄) → K

1
(𝐼 )

is defined by the composition K
0
(𝑄) �−→ K

2
(𝑄) 𝜕−→ K

1
(𝐼 ), called the exponential map. In particular, we may

define K−1
:= K

1
to extend the half-infinite long exact sequence to an infinite one. (“The desuspension is the

same as the suspension.”)

Bott periodicity is essentially due to the K-stability of K
0
.

• K-stable: Any corner embedding 𝑒 : 𝐴 ↩→ 𝐴 ⊗ K induces an isomorphism 𝐹 (𝑒) : 𝐹 (𝐴) �−→ 𝐹 (𝐴 ⊗ K).

Remark 2.6. Before proving the Bott periodicity, we first explain why we need K-stability — or why it makes

K-theory useful.

Let𝐺 be a compact group acting on a topological space𝑋 . We would like to understand the orbit space𝑋/𝐺 ,

which is usually ill-behaved (e.g. non-Hausdorff), and C
0
(𝑋/𝐺) becomes useless. In the philosophy of NCG,

we should replace the algebra C
0
(𝑋/𝐺) by a noncommutative one C

0
(𝑋 ) ⋊𝐺 , which is noncommutative but

easier to describe. C
0
(𝑋/𝐺) is Morita–Rieffel equivalent to C

0
(𝑋 ) ⋊𝐺 . So a reasonable homology theory for

C
∗
-algebras should be the same for Morita–Rieffel equivalent C

∗
-algebras.

Any C
∗
-algebra 𝐴 is Morita–Rieffel equivalent to 𝐴 ⊗ K. Therefore such an embedding should be mapped

to an isomorphism. This is K-stability.
(One might also attempt to replace K-stability by some weaker stability conditions like M𝑛-stability. They

yield some connective/unstable variants of K-theory.)
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We shall prove that

Theorem 2.7 ([8]). Let 𝐹 : C∗Alg → Ab be a K-stable homological functor, that is, 𝐹 is homotopy invariant,
half-exact and K-stable. Then 𝐹 satisfies Bott periodicity: that is, there is a natural isomorphism

𝐹 (𝐴) � 𝐹 (S2

𝐴).

The proof makes essential use of the Toeplitz algebra T and a closed ideal T
0
⊆ T . A short review of the

Toeplitz extension can be found in [1].

Definition 2.8. Let 𝑆 ∈ B(ℓ2(N)) be the unilateral shift. That is,

𝑆 (𝑥
0
, 𝑥

1
, 𝑥

2
, . . .) = (0, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . .) .

The Toeplitz algebra T is the C
∗
-subalgebra of B(ℓ2(N)) generated by 𝑆 .

Exercise 2.9. • 𝑆
∗
𝑆 = 1 and 𝑆𝑆

∗
= 1 − 𝐸

00

• T contains all finite-rank operators, hence K ⊆ T as a closed ideal.

Another characterisation is that the Toeplitz algebra is the universal C
∗
-algebra generated by an isometry 𝑆 .

That is, let𝐴 be a unitalC
∗
-algebra. There is a bijection between {Isometries 𝑠 in𝐴} and {

∗
-homomorphismsT →

𝐴 sending 𝑆 ↦→ 𝑠}.

Definition 2.10. T
0
is the closed ideal

T
0

:= ker(T → C : 𝑆 ↦→ 1) .

The quotient T /K is isomorphic to C(T) (Why? Notice that 𝑆 is essentially unitary, that is, its image is

unitary in T /K; and has essential spectrum T). The extension

K↣ T ↠ C(T)

is called the Toeplitz extention.

The map T 𝑆 ↦→1−−−→ C factors as T ↠ C(T)
ev

1−−→ C. So the kernel T
0
restricrts to T

0
→ C

0
(R) since C

0
(R) �

ker(C(T)
ev

1−−→ C). This fits in the diagram

K T
0

C
0
(R)

K T C(T)

Notice that C
0
(R) is nuclear (because it is commutative). Then for any C

∗
-algebra 𝐴 we have an extension

𝐴 ⊗
sp

K↣ 𝐴 ⊗
sp
T

0
↠ 𝐴 ⊗

sp
C

0
(R) (1)

where ⊗
sp
denotes the spatial tensor product. But as C

0
(R) and K are nuclear (hence also T

0
), these C

∗
-tensor

products are unique and we may remove sp as well.

The extension (1) yields the long exact sequence:

· · · 𝐹 (S(𝐴 ⊗ T
0
)) → 𝐹 (S(𝐴 ⊗ C

0
(R))) ❀−→ 𝐹 (𝐴 ⊗ K) → 𝐹 (𝐴 ⊗ T

0
) → · · ·

Notice that S(𝐴 ⊗ C
0
(R)) = S

2

𝐴. By K-stability, 𝐹 (𝐴 ⊗ K) � 𝐹 (𝐴). To prove Bott periodicity, it suffices to show

that the map ❀ is an isomorphism. This means 𝐹 (S(𝐴 ⊗ T
0
)) and 𝐹 (𝐴 ⊗ T

0
) are zero for any 𝐴.

Notice that if 𝐹 is a K-stable homological functor, then so are 𝐹 (S(𝐴 ⊗ −)) and 𝐹 (𝐴 ⊗ −). Therefore it
suffices to prove that

Lemma 2.11. If 𝐹 : C∗Alg→ Ab is a K-stable homological functor. Then 𝐹 (T
0
) = 0.
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How to prove the lemma? Intuitively, if 𝐹 (T
0
) = 0, then given any split-exact sequence

T
0

𝐸 𝑄,
𝑖 𝑞

𝑠

we must have 𝐹 (𝑞) and 𝐹 (𝑠) are isomorphisms. Intuitively we may choose the obvious split extension

T
0

T C,𝑖 𝑞

𝑠

where 𝑞 : 𝑆 ↦→ 1 and 𝑠 is the unique unital
∗
-homormophism C→ T . Clearly 𝐹 (𝑞) ◦𝐹 (𝑠) = id but proving 𝐹 (𝑠) ◦

𝐹 (𝑞) = id is usually difficult. K-stability allows us to provide some extra space in order to construct a

homotopy 𝑠 ◦ 𝑞 ∼ id. Then the homotopy invariance of 𝐹 implies 𝐹 (𝑠) ◦ 𝐹 (𝑞) = id. Set

ˆT := K ⊗ T + T ⊗ 1 ⊆ T ⊗ T .

Then K ⊗ T
0
is a closed ideal of

ˆT . In partular, (K ⊗ T
0
) ∩ (T ⊗ 1) = ∅, so there is a split extension

K ⊗ T
0

ˆT T ,𝑖 𝑞

𝑠

where 𝑠 sends T to the copy T ⊗ 1 ⊆ ˆT .

Proof of Lemma 2.11. We claim that 𝐹 (𝑖) is the zero map. Then 𝐹 (T
0
) � 𝐹 (K ⊗ T

0
) = 0 since 𝐹 (𝑖) is injective.

For this we use the additivity of 𝐹 :

• Additivity: If 𝑓 , 𝑔 : 𝐴 ⇒ 𝐵 are orthogonal ∗-homomorphisms between C
∗
-algebras. Then 𝑓 + 𝑔 is also a

∗
-homomorphism and 𝐹 (𝑓 + 𝑔) = 𝐹 (𝑓 ) + 𝐹 (𝑔).

If 𝐹 is a homological functor, then it is split-exact automatically additive. (Exercise).

Instead of 𝑖 , we consider the
∗
-homomorphism 𝑗 : T

0
↩→ K ⊗ T

0

𝑖−→ T . Since 𝐹 is K-stable, T ↩→ K ⊗ T
0

induces an isomorphism. Then it suffices to show that 𝐹 ( 𝑗) = 0.

Define the
∗
-homomorphism

𝜙
1
: T

0
→ ˆT , 𝑥 ↦→ (𝑆 ⊗ 1) (𝑥 ⊗ 1) (𝑆∗ ⊗ 1) = Ad𝑆 𝑥 ⊗ 1,

and set

𝜙
0

:= 𝑗 + 𝜙
1
: T

0
→ ˆT .

We claim that 𝑗 and 𝜙
1
are orthogonal and 𝐹 (𝜙

0
) = 𝐹 (𝜙

1
). As a result

𝐹 (𝜙
1
) = 𝐹 (𝜙

0
) = 𝐹 ( 𝑗 + 𝜙

1
) = 𝐹 ( 𝑗) + 𝐹 (𝜙

1
) =⇒ 𝐹 ( 𝑗) = 0 =⇒ 𝐹 (𝑖) = 0.

It is easy to see that 𝑗 ⊥ 𝜙
1
because 𝑗 (𝑥) = 𝐸

00
⊗ 𝑥 = (1− 𝑆𝑆∗) ⊗ 𝑥 and 𝜙

1
(𝑦) = 𝑆𝑦𝑆

∗ ⊗ 1. So 𝑗 (𝑥) · 𝜙
1
(𝑦) =

𝜙
1
(𝑦) · 𝑗 (𝑥) = 0. Therefore, 𝜙

0
= 𝑗 + 𝜙

1
is a

∗
-homomorphism.

Now we prove that 𝐹 (𝜙
0
) = 𝐹 (𝜙

1
). Notice that T

0
is generated by 𝑆 − 1, and

𝜙
1
(𝑆 − 1) = (𝑆 (𝑆 − 1)𝑆∗) ⊗ 1 = 𝑆

2

𝑆
∗ ⊗ 1 − 𝑆𝑆∗ ⊗ 1 = 𝑆

2

𝑆
∗ ⊗ 1 + 𝐸

00
⊗ 1 − 1 ⊗ 1 =: 𝑆

1
− 1

𝜙
0
(𝑆 − 1) = 𝑆

2

𝑆
∗ ⊗ 1 + 𝐸

00
⊗ 1 − 1 ⊗ 1 + 𝐸

00
⊗ (𝑆 − 1) = 𝑆

2

𝑆
∗ ⊗ 1 + 𝐸

00
⊗ 𝑆 − 1 ⊗ 1 =: 𝑆

0
− 1.

So it suffices to find a path of isometries 𝑆𝑡 in
ˆT . Then

𝜙𝑡 : T
0
→ ˆT , 𝑆 − 1 ↦→ 𝑆𝑡 − 1

is a homotopy between 𝜙
0
and 𝜙

1
. We can write 𝑆𝑖 = 𝑈𝑖 ◦ (𝑆 × 1) for 𝑖 = 0, 1, where

𝑈
0
= 𝑆

2(𝑆∗)2 ⊗ 1 + 𝐸
00
𝑆
∗ ⊗ 𝑆 + 𝑆𝐸

00
⊗ 𝑆∗ + 𝐸

00
⊗ 𝐸

00
,

𝑈
1
= 𝑆

2(𝑆∗)2 ⊗ 1 + 𝐸
00
𝑆
∗ ⊗ 1 + 𝑆𝐸

00
⊗ 1.

Both 𝑈
0
and 𝑈

1
are self-adjoint unitaries. For every self-adjoint unitary we may continuously move the −1

eigenvalue of it to +1 along the unit circle via functional calculus. Then𝑈𝑖 are both connected to 1 by a path

of unitaries in
ˆT . Therefore 𝑆

0
and 𝑆

1
are connected by a path of isometries, and 𝜙

0
is homotopic to 𝜙

1
. □
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2.3 Thom isomorphism

A historical remark of K-theory:

• Grothendieck (1957): (algebraic) K-theory of varieties, working with coherent sheaves. “K” stands for

Klasse (“class” in German).

• Atiyah, Hirzebruch (1959): (topological) K-theory of topological spaces, working with vector bundles.

Roughly: “Classifying vector bundles over a topological space (up to stable equivalence)”.

• Serre (1955), Swan (1962): vector bundles on compact spaces ∼ projective modules over commutative

rings (algebras).

• Many people
1

(1970s): topological K-theory for C
∗
-algebras. Vector bundles are replaced by finitely-

generated projective modules. Roughly: “Classifying vector bundles over a noncommutative space”.

Let 𝑋 be a locally compact Hausdorff space. The topological K-theory of 𝑋 is the abelian group generated

by formal differences of equivalence classes of vector bundles. There are isomorphisms

K𝑛 (C0
(𝑋 )) � K

−𝑛 (𝑋 ).
Topological K-theory is a generalised cohomology theory of topological spaces. In particular, we have

Theorem 2.12 (Thom isomorphism). Let 𝑋 be a compact Hausdorff space. Let 𝐸 be an rank-𝑘 K-oriented real
vector bundle over 𝑋 . Then there are isomorphisms

K
𝑛 (𝐸) � K

𝑛+𝑘 (𝑋 ).
In the view of KK-theory, the Thom isomorphism has the following explanation. Let 𝐸 → 𝑋 be a real

vector bundle. Then there is a KK-equivalence

Γ(Cℓ (𝐸)) ∼
KK

C
0
(𝐸),

where Γ(Cℓ (𝐸)) is the C
∗
-algebra of sections of the Clifford bundle of 𝐸.

If 𝐸 is K-oriented, then the K-orientation gives a Morita equivalence (see Definition 3.20):

Γ(Cℓ (𝐸)) ∼
Morita

{
C(𝑋 ) if rank(𝐸) is even,
C(𝑋 ) ⊗̂ Cℓ

1
if rank(𝐸) is odd.

Here Cℓ
1
is the complex Clifford algebra generated by a single generator, equipped with the standard grading; ⊗̂

denotes the graded tensor product. The graded Clifford algebra Cℓ
1
is KK-equivalent to C

0
(R), hence yields

only a dimension shift of the corresponding KK-theory group. Together with the previous KK-equivalence

we have that C(𝑋 ) is KK-equivalent to C
0
(𝐸) up to a dimension shift. We shall see later that KK-equivalent

C
∗
-algebras have the same K-theory.

The Connes–Thom isomorphism is an analog of the Thom isomorphism. For this one needs the conception

of crossed product C
∗
-algebras. Let 𝐺 be a unimodular locally compact group and 𝐴 be a 𝐺-C

∗
-algebra, that is,

a C
∗
-algebra equipped with a 𝐺-action 𝐺

𝛼−→ Aut(𝐴). For 𝑓 , 𝑔 ∈ C
c
(𝐺,𝐴), define

𝑓
∗(𝑡) := 𝛼𝑡 (𝑓 (𝑡−1))∗,

𝑓 ∗ 𝑔(𝑡) :=

∫
𝐺

𝑓 (𝑠)𝛼𝑠 (𝑔(𝑠−1

𝑡)) d𝜇 (𝑠) .

Then C
c
(𝐺,𝐴) becomes a

∗
-algebra. Its completion with respect to the 𝐿

1

-norm is a Banach
∗
-algebra, denoted

by 𝐿
1(𝐺,𝐴). The crossed product 𝐴 ⋊𝛼 𝐺 is the completion of 𝐿

1(𝐺,𝐴) with respect to a suitable C
∗
-norm.

(There are different choices of C
∗
-norms in general, which yield different crossed product C

∗
-algebras. If 𝐺 is

amenable, then all of them are the same.)

Example 2.13. If 𝐺
𝛼−→ Aut(𝐴) is the trivial action. Then 𝐴 ⋊𝛼 𝐺 � 𝐴 ⊗ C

∗(𝐺).
Theorem 2.14 (Connes). For any 𝛼 : R𝑛 → Aut(𝐴), K•+𝑛 (𝐴 ⋊𝛼 R𝑛) � K•(𝐴).

If 𝛼 is the trivial action, then 𝐴 ⋊𝛼 R𝑛 � 𝐴 ⊗ C
0
(R) and the Connes–Thom isomorphism recovers the Bott

periodicity.

1

I do not know who exactly were among those pioneers that studied K-theory of C
∗
-algebras. I am grateful if the reader can tell me.
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2.4 Examples of K-theory groups

We have enough tools to compute the K-theory of some familiar C
∗
-algebras: C, K, B, T , C

0
(R𝑛), C(T𝑛).

Example 2.15. We have already seen that K
0
(C) = Z and K

1
(C) = 0. By K-stability, K has the same K-theory

with C. In the proof of Bott periodicity we have seen that the K-theory of T agrees with the K-theory of C.
Exercise: write down a generator of K

0
(T ).

Example 2.16. Let 𝐴 be any C
∗
-algebra. Define the cone of 𝐴 as C𝐴 := C

0
((0, 1], 𝐴) = C

0
(0, 1] ⊗ 𝐴. It is

contractible, that is, the identity map id : C𝐴→ C𝐴 is homotopic to the zero map. The homotopy is given by

𝐹𝑡 (𝑓 ) (𝑠) := 𝑓 (𝑡𝑠) .

Therefore, K
0
(C𝐴) = K

1
(C𝐴) = 0. Consider the extension

S𝐴↣ C𝐴
ev

1

↠ 𝐴.

It induces an long exact sequence

· · · → K
1
(C𝐴) → K

1
(𝐴) → K

0
(S𝐴) → K

0
(C𝐴) → · · · .

Since C𝐴 has vanishing K-theory, we obtain K
1
(𝐴) � K

0
(S𝐴) as desired.

Example 2.17. K
0
(B) = K

1
(B) = 0. K

0
(B) = 0 because, roughly speaking, we have projections and unitaries

of infinite rank. To be precise: the isomorphism ℓ
2(N) ⊕ ℓ

2(N) � ℓ
2(N) induces a homotopy id ⊕ id ∼ id,

so [id] = 0 in K
0
(B), forcing K

0
(B) = 0.

K
1
(B) = 0 because K

1
(𝐴) = 0 for any von Neumann algebra 𝐴. The logarithm function is a Borel function

on T. The path 𝑡 ↦→ exp(𝑖𝑡 Log(𝑈 )) connects any unitary 𝑈 ∈ 𝐴 to identity. So the unitary group of a von

Neumann algebra is connected.

Example 2.18. The previous example can be generalised: let 𝐴 be a C
∗
-algebra.M(𝐴 ⊗ K) is called the stable

multiplier algebra of 𝐴. Then K
0
(M(𝐴 ⊗ K)) = K

1
(M(𝐴 ⊗ K)) = 0. B is the special case 𝐴 = C.

Example 2.19. By Bott periodicity: K
0
(C

0
(R𝑛)) � K𝑛 (C) and K

1
(C

0
(R𝑛)) = K𝑛+1(C).

Example 2.20. Identify T with the one-point compactification of (0, 1) � R. The evaluation map ev
1
induces a

split extension

C
0
(R) C(T) C

ev
1

By split-exactness of K-theory: K•(C(T)) = K•(C) ⊕ K•(C0
(R)) = K•(C) ⊕ K•+1(C) = Z.

Inductively: consider T𝑛 � T𝑛−1 × T and the evaluation map for the last entry. We obtain a similar split

extension

C
0
(T𝑛−1 × R) C(T𝑛) C(T𝑛−1)ev

1

So K•(C(T𝑛)) = K•(C(T𝑛−1)) ⊕ K•(C0
(T𝑛−1 × R)) = K•(C(T𝑛−1)) ⊕ K•+1(C0

(T𝑛−1)) = Z2
𝑛−1

.

Exercise: write down the generators of K•(C(T𝑛)).

March 1 and March 8, 2022

Hilbert C∗-modules
Speaker: Jack Ekenstam (Leiden University)

The main reference for this section is [17].
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3.1 Inner-product modules and Hilbert C∗-modules

Definition 3.1. Let 𝐴 be a C
∗
-algebra. An inner-product 𝐴-module is a C-linear space 𝐸 that is also a right 𝐴-

module, satisfying

𝜆(𝑥𝑎) = (𝜆𝑥)𝑎 = 𝑥 (𝜆𝑎) for all 𝜆 ∈ C, 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝐸,

together with a linear map ⟨·, ·⟩ : 𝐸 × 𝐸 → 𝐴 such that:

1. ⟨𝑥, 𝛼𝑦 + 𝛽𝑧⟩ = 𝛼 ⟨𝑥,𝑦⟩ + 𝛽 ⟨𝑥, 𝑧⟩.
2. ⟨𝑥,𝑦𝑎⟩ = ⟨𝑥,𝑦⟩𝑎.
3. ⟨𝑦, 𝑥⟩ = ⟨𝑥,𝑦⟩∗.
4. ⟨𝑥, 𝑥⟩ ≥ 0, and ⟨𝑥, 𝑥⟩ = 0 iff 𝑥 = 0.

We call 𝐸 a semi-inner-product module if 4 is replaced by

4’. ⟨𝑥, 𝑥⟩ ≥ 0.

Proposition 3.2. If 𝐸 is a semi-inner-product 𝐴-module, then ⟨𝑦, 𝑥⟩⟨𝑥,𝑦⟩ ≤ ∥⟨𝑥, 𝑥⟩∥⟨𝑦,𝑦⟩.

Proof. WLOG ∥⟨𝑥, 𝑥⟩∥ = 1. For any 𝑎 ∈ 𝐴:

0 ≤ ⟨𝑥𝑎 − 𝑦, 𝑥𝑎 − 𝑦⟩ = 𝑎
∗⟨𝑥, 𝑥⟩𝑎 − ⟨𝑦, 𝑥⟩𝑎 − 𝑎∗⟨𝑦,𝑦⟩ + ⟨𝑦,𝑦⟩

≤ 𝑎
∗
𝑎 − ⟨𝑦, 𝑥⟩𝑎 − 𝑎∗⟨𝑦,𝑦⟩ + ⟨𝑦,𝑦⟩

≤ 𝑎
∗
𝑎 − ⟨𝑦, 𝑥⟩𝑎 − 𝑎∗⟨𝑥,𝑦⟩ + ⟨𝑦,𝑦⟩.

Choose 𝑎 = ⟨𝑥,𝑦⟩. Then 𝑎
∗
𝑎 ≤ ⟨𝑦,𝑦⟩. □

Let 𝐸 be an inner-product module. Let 𝑥 ∈ 𝐸. Define ∥𝑥 ∥ := ∥⟨𝑥, 𝑥⟩∥1/2

. Then ∥⟨𝑥,𝑦⟩∥ ≤ ∥𝑥 ∥∥𝑦∥. So ∥·∥ is
a norm on 𝐸.

If 𝐸 is just an semi-inner-product module, then ∥·∥ is a semi-norm on 𝐸. Define 𝑁 := {𝑥 ∈ 𝐸 | ⟨𝑥, 𝑥⟩ = 0}.
Then 𝐸/𝑁 is an inner-product module by setting

⟨𝑥 + 𝑁,𝑦 + 𝑁 ⟩𝐸/𝑁 := ⟨𝑥,𝑦⟩𝐸 .

𝐸 is, in particular, a normed 𝐴-module:

∥𝑥𝑎∥2 = ∥⟨𝑥𝑎, 𝑥𝑎⟩∥ = ∥𝑎∗⟨𝑥, 𝑥⟩𝑎∥ ≤ ∥𝑥 ∥2∥𝑎∗𝑎∥ = (∥𝑥 ∥∥𝑎∥)2.

Definition 3.3. A Hilbert 𝐴-module is a complete inner-product 𝐴-module.

3.1.1 Examples of Hilbert C∗-modules

Example 3.4. • Let 𝐴 be a C
∗
-algebra, and 𝐸

0
be an inner-product 𝐴-module. Then the completion 𝐸 := 𝐸

0

is a Hilbert 𝐴-module.

• Let 𝐴
0
be a pre-C

∗
-algebra. We can define inner-product 𝐴

0
-modules in a similar fashion. Let 𝐸

0
be an

inner-product 𝐴
0
-module. Let 𝐴 := 𝐴

0
and 𝐸 := 𝐸

0
. Then 𝐸 is a Hilbert 𝐴-module.

Example 3.5. Let 𝐴 be a C
∗
-algebra and 𝐸 be a Hilbert 𝐴-module. Let (𝑒𝑖) be an approximate unit for 𝐴.

For 𝑥 ∈ 𝐸, ⟨𝑥𝑒𝑖 − 𝑥, 𝑥𝑒𝑖 − 𝑥⟩ → 0. So 𝐸𝐴 is dense in 𝐸 (and 𝑥1 = 𝑥 if 𝐴 is unital). If 𝐴 is not unital, then 𝐸 is

also a Hilbert 𝐴
+
-module in a natural way.

Example 3.6. Let 𝐴 be a C
∗
-algebra and 𝐸 be a Hilbert 𝐴-module. Define

𝐵 := ⟨𝐸, 𝐸⟩ = {⟨𝑥,𝑦⟩ | 𝑥,𝑦 ∈ 𝐸}.

This is a closed ideal in 𝐴. 𝐸𝐵 is dense in 𝐸 by the previous calculation.

𝐵 need not be the whole of 𝐴. If 𝐵 = 𝐴, we say 𝐴 is full.
A non-full example: let 𝐸 = 𝐴 = C(T) and 𝐹 = C

0
(T \ {1}). Then ⟨𝐹, 𝐹 ⟩ ≠ C(T).
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Example 3.7. Let 𝐴 be a C
∗
-algebra. Then 𝐸 = 𝐴 is a Hilbert 𝐴-module with ⟨𝑎, 𝑏⟩ := 𝑎

∗
𝑏. More generally:

let 𝐽 ⊆ 𝐴 be a closed right ideal. Then 𝐽 is a Hilbert 𝐴-submodule of 𝐴.

Example 3.8. Let {𝐸𝑖}𝑖∈𝐼 be a set of Hilbert 𝐴-modules. Define⊕
𝑖∈𝐼

𝐸𝑖 :=

{
(𝑥𝑖)𝑖∈𝐼 | 𝑥𝑖 ∈ 𝐸𝑖 ,

∑︁
𝑖∈𝐼
⟨𝑥𝑖 , 𝑥𝑖⟩ converges

}
.

This is a Hilbert 𝐴-module by setting ⟨(𝑥𝑖), (𝑦𝑖)⟩ :=
∑

𝑖∈𝐼 ⟨𝑥𝑖 , 𝑦𝑖⟩.
Example 3.9. Let 𝐴 be a C

∗
-algebra. Let H be a Hilbert space with basis {𝜉𝑖}𝑖 ∈ 𝐼 . Then H ⊗

alg
𝐴 is an

inner-product 𝐴-module. Its completion H ⊗ 𝐴 is a Hilbert 𝐴-module. If H is infinite-dimensional, we

writeH𝐴 := H ⊗ 𝐴. In general:H ⊗ 𝐴 � ⊕𝑖∈𝐼𝐴.
Example 3.10 (Localisation of Hilbert C

∗
-modules). Let 𝐴 be a unital C

∗
-algebras and 𝐵 ⊆ 𝐴 be a unital C

∗
-

subalgebra. A conditional expectation from 𝐴 to 𝐵 is a linear contractive idempotent𝜓 : 𝐴→ 𝐵. A conditional

expectation is always positive and satisfies

𝜓 (𝑏𝑎𝑏′) = 𝑏𝜓 (𝑎)𝑏′, for 𝑎 ∈ 𝐴 and 𝑏,𝑏
′ ∈ 𝐵.

We say𝜓 is faithful, if
𝑎 ≥ 0, 𝜓 (𝑎) = 0 =⇒ 𝑎 = 0.

If 𝐸 is a Hilbert 𝐴-module, then ⟨𝑥,𝑦⟩𝐵 := 𝜓 (⟨𝑥,𝑦⟩𝐴) defines a semi-inner-product 𝐵-module structure for 𝐸. It

is an inner-product if𝜓 is faithful. In particular: 𝐴 is a Hilbert 𝐵-module with ⟨𝑥,𝑦⟩𝐵 := 𝜓 (⟨𝑥,𝑦⟩𝐴).
Let 𝐸 be a Hilbert 𝐴-module and 𝐹 ⊆ 𝐸 be a Hilbert 𝐴-submodule. Then

𝐹
⊥

:= {𝑦 ∈ 𝐸 | ⟨𝑥,𝑦⟩ = 0 for all 𝑥 ∈ 𝐹 }

is a Hilbert 𝐴-submodule of 𝐸. Warning. In general 𝐸 ≠ 𝐹 ⊕ 𝐹
⊥
.

Example 3.11. Let 𝐸 = 𝐴 = C(T) and 𝐹 = C
0
(T \ {1}). Then 𝐹

⊥
= {0}.

3.2 Adjointable operators

Definition 3.12. Let 𝐸 and 𝐹 be Hilbert 𝐴-modules. The adjointable operators from 𝐸 to 𝐹 is the set

B𝐴 (𝐸, 𝐹 ) := {𝑇 : 𝐸 → 𝐹 | There exists 𝑇 ∗ : 𝐹 → 𝐸 such that ⟨𝑇𝑥,𝑦⟩ = ⟨𝑥,𝑇 ∗𝑦⟩ for all 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 }.

Thus 𝑇 ∈ B𝐴 (𝐸, 𝐹 ) is automatically 𝐴-linear.

Let 𝑇 ∈ B𝐴 (𝐸, 𝐹 ). Take 𝑥 ∈ 𝐸 with ∥𝑥 ∥ ≤ 1. Set

𝑇𝑥 : 𝐹 → 𝐴, 𝑇𝑥 (𝑦) := ⟨𝑇𝑥,𝑦⟩.

Then ∥𝑇𝑥 (𝑦)∥ ≤ ∥𝑇 ∗𝑦∥. So {∥𝑇𝑥 ∥ | ∥𝑥 ∥ ≤ 1} is bounded by Banach–Steinhaus. Therefore 𝑇 is bounded.

But not every bounded operator is adjointable! Consider

Example 3.13. Let 𝐹 = 𝐴 = C(T), and 𝐸 = C
0
(T \ {1}). Consider the inclusion 𝑖 : 𝐸 → 𝐹 . If 𝑖 is adjointable,

then 𝑖
∗
must satisfy 𝑖

∗(1) = 1, but 1 ∉ 𝐸.

Some calculi for adjointable operators:

• If 𝑇 ∈ B𝐴 (𝐸, 𝐹 ), then 𝑇 ∗ ∈ B𝐴 (𝐸, 𝐹 ).
• If 𝑇 ∈ B𝐴 (𝐸, 𝐹 ) and 𝑆 ∈ B𝐴 (𝐹,𝐺). Then 𝑆 ◦𝑇 ∈ B𝐴 (𝐸,𝐺).
• B𝐴 (𝐸) := B𝐴 (𝐸, 𝐸) is a C

∗
-algebra: notice that

∥𝑇 ∥2 = sup

∥𝑥 ∥≤1

∥⟨𝑇𝑥,𝑇𝑥⟩∥2 = sup

∥𝑥 ∥≤1

∥⟨𝑇 ∗𝑇𝑥, 𝑥⟩∥ ≤ ∥𝑇 ∗𝑇 ∥.

For the other direction use Cauchy–Schwarz.
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Proposition 3.14. Let 𝑇 ∈ B𝐴 (𝐸, 𝐹 ) and 𝑥 ∈ 𝐸. Then |𝑇𝑥 | ≤ ∥𝑇 ∥|𝑥 |, where |𝑥 | := ⟨𝑥, 𝑥⟩1/2.

Proof. Let 𝜌 be any state of 𝐴. Then 𝜌 (⟨·, ·⟩) is a semi-inner-product. We iteratively use Cauchy–Schwartz:

𝜌 ( |𝑇𝑥 |2) = 𝜌 (⟨𝑇𝑥,𝑇𝑥⟩) = 𝜌 (⟨𝑇 ∗𝑇𝑥, 𝑥⟩) ≤ 𝜌 (⟨𝑇 ∗𝑇𝑥,𝑇 ∗𝑇𝑥⟩)
1

2 𝜌 (⟨𝑥, 𝑥⟩)
1

2

= 𝜌 (⟨(𝑇 ∗𝑇 )2𝑥, 𝑥⟩)
1

2 𝜌 (⟨𝑥, 𝑥⟩)
1

2

≤ 𝜌 (⟨(𝑇 ∗𝑇 )2𝑥, (𝑇 ∗𝑇 )2𝑥⟩)
1

4 𝜌 (⟨𝑥, 𝑥⟩)
1

2
+ 1

4

≤ · · ·

≤ 𝜌 (⟨(𝑇 ∗𝑇 )2
𝑛

𝑥, 𝑥⟩)
1

2
𝑛 𝜌 (⟨𝑥, 𝑥⟩)1−

1

2
𝑛

≤ ∥𝑇 ∗𝑇 ∥(∥𝑥 ∥2)
1

2
𝑛 𝜌 ( |𝑥 |2)1−

1

2
𝑛

Let 𝑛 →∞. Then 𝜌 ( |𝑇𝑥 |2) ≤ ∥𝑇 ∥2𝜌 ( |𝑥 |2) = 𝜌 (∥𝑇 ∥2 |𝑥 |2). This holds for all states 𝜌 of 𝐴, hence

|𝑇𝑥 |2 ≤ ∥𝑇 ∥2 |𝑥 |2.

Taking the square root we obtain |𝑇𝑥 | ≤ ∥𝑇 ∥|𝑥 |. □

3.3 Compact operators

Let 𝐸 and 𝐹 be Hilbert 𝐴-modules. Let 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 . Define the operator

Θ𝑥,𝑦 : 𝐹 → 𝐸, Θ𝑥,𝑦 (𝑧) := 𝑥 ⟨𝑦, 𝑧⟩.

Then Θ is adjointable and Θ∗𝑥,𝑦 = Θ𝑦,𝑥 .

Definition 3.15. The compact operators from 𝐹 to 𝐸 is the set

K𝐴 (𝐹, 𝐸) := span{Θ𝑥,𝑦 | 𝑥 ∈ 𝐸,𝑦 ∈ 𝐹 }.

We have:

• Θ𝑥,𝑦Θ𝑢,𝑣 = Θ𝑥 ⟨𝑦,𝑢 ⟩,𝑣 .

• Θ𝑡𝑥,𝑦 = 𝑡Θ𝑥,𝑦 .

• Θ𝑥,𝑦𝑆 = Θ𝑥,𝑆
∗
𝑦 for 𝑆 adjointable.

Therefore K𝐴 (𝐸) is an ideal of B𝐴 (𝐸).
Example 3.16. • Let 𝐸 = 𝐴. Then K𝐴 (𝐴) � 𝐴: Θ𝑎,𝑏 ↦→ 𝑎𝑏

∗
. This is clear if 𝐴 is unital. If 𝐴 is non-unital,

then we may either use the fact that {𝑎𝑏 | 𝑎, 𝑏 ∈ 𝐴} is dense in 𝐴 by the existence of an approximate

unit; or use Cohen–Hewitt factorization theorem.

• If 𝐴 is unital, then K𝐴 (𝐴) = B𝐴 (𝐴) because every adjointable operator 𝑇 satisfies

⟨𝑇𝑥,𝑦⟩ = (𝑇𝑥)∗𝑦 = 𝑥
∗(𝑇 1)∗𝑦 = ⟨𝑇 (1)𝑥,𝑦⟩,

So 𝑇𝑥 = 𝑇 (1)𝑥 = Θ𝑇 (1),1(𝑥).
• K𝐴 (𝐸𝑚, 𝐹𝑛) � M𝑚×𝑛 (K𝐴 (𝐸, 𝐹 )) and B𝐴 (𝐸𝑚, 𝐹𝑛) � M𝑚×𝑛 (B𝐴 (𝐸, 𝐹 )).

Definition 3.17 (Strict topology). The strict topology on B𝐴 (𝐸, 𝐹 ) is given by the semi-norms

𝑇 ↦→ ∥𝑇𝑥 ∥, 𝑇 ↦→ ∥𝑇 ∗𝑥 ∥, 𝑥 ∈ 𝐸.

Proposition 3.18 ([17, Proposition 1.3]). K𝐴 (𝐸, 𝐹 ) is strictly dense in the unit ball of B𝐴 (𝐸, 𝐹 ).

Theorem 3.19. Every 𝑇 ∈ K𝐴 (𝐸,𝐴) is given by 𝑇𝑦 = ⟨𝑥,𝑦⟩ for some 𝑥 ∈ 𝐸.
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3.3.1 Morita equivalence

Definition 3.20 (Morita equivalence). Let𝐴 and 𝐵 be C
∗
-algebras. We say they are (strongly) Morita equivalent,

denoted by 𝐴 ∼
Morita

𝐵, if there exists a full Hilbert 𝐴-module 𝐸 such that 𝐵 � K𝐴 (𝐸).

Theorem 3.21. If 𝐴 and 𝐵 are 𝜎-unital C
∗-algebras. Then 𝐴 ∼

Morita
𝐵 iff 𝐴 ⊗ K � 𝐵 ⊗ K.

3.4 Operations on Hilbert C∗-modules

3.4.1 Exterior tensor product

Let 𝐸 be a Hilbert 𝐵-module and 𝐹 be a Hilbert𝐶-module. Then the algebraic tensor product 𝐸⊗
alg

𝐹 is naturally

a right 𝐵 ⊗
alg

𝐶-module:

(𝑒 ⊗ 𝑓 ) · (𝑏 ⊗ 𝑐) := 𝑒𝑏 ⊗ 𝑓 𝑐 .

Notice that 𝐵 ⊗
alg

𝐶 is dense in 𝐵 ⊗
sp
𝐶 . And we define

⟨𝑒 ⊗ 𝑓 , 𝑒
′ ⊗ 𝑓

′⟩𝐸⊗𝐹 := ⟨𝑒, 𝑒′⟩𝐸 ⊗ ⟨𝑓 , 𝑓 ′⟩𝐹 .

This is a semi-inner-product. We may quotient it by the elements

𝑁 := {𝑥 ∈ 𝐸 ⊗
alg

𝐹 | ⟨𝑥, 𝑥⟩𝐸⊗𝐹 = 0}

to obtain a inner-product module, and complete to a Hilbert 𝐵 ⊗
sp
𝐶-module.

Remark 3.22. According to the discussion on [17, Page 34], the semi-inner-product defined above is indeed an

inner-product. That is, 𝑁 = 0. The proof is based on Kasparov’s stablisation theorem (Theorem 3.28). See [17,

Page 62].

Definition 3.23. The exterior tensor product of 𝐸 and 𝐹 is the Hilbert 𝐵 ⊗
sp
𝐶-module

𝐸 ⊗ 𝐹 := 𝐸 ⊗
alg

𝐹/𝑁
⟨·,·⟩𝐸⊗𝐹

.

3.4.2 Interior tensor product

Let 𝐸 be a Hilbert 𝐵-module and 𝐹 be a Hilbert 𝐴-module. Let 𝜙 : 𝐵 → B𝐴 (𝐹 ) be a ∗-homomorphism. Then 𝐵

acts on 𝐹 (on the left): 𝑏 · 𝑓 := 𝜙 (𝑏) 𝑓 . Define the 𝐴-valued semi-inner-product on 𝐸 ⊗
alg

𝐹 :

⟨𝑒 ⊗ 𝑓 , 𝑒
′ ⊗ 𝑓

′⟩𝐸⊗𝜙𝐹 := ⟨𝑓 , 𝜙 (⟨𝑒, 𝑒′⟩𝐸 𝑓 ′)⟩𝐹 .

Definition 3.24. The interior tensor product of 𝐸 and 𝐹 is the Hilbert 𝐴-module

𝐸 ⊗𝜙 𝐹 = 𝐸 ⊗
alg

𝐹/𝑁
⟨·,·⟩𝐸⊗𝜙𝐹

,

where

𝑁 = {𝑥 ∈ 𝐸 ⊗
alg

𝐹 | ⟨𝑥, 𝑥⟩𝐸⊗𝜙𝐹 = 0}.

One can check that 𝑁 is generated by the elements of the form

(𝑒 · 𝑏) ⊗ 𝑓 − 𝑒 ⊗ (𝑏 · 𝑓 ) .

Remark 3.25. How to check the positivity argument? We have

⟨𝑒 ⊗ 𝑓 , 𝑒
′ ⊗ 𝑓

′⟩𝐸⊗𝜙𝐹 = ⟨𝑓 , 𝜙 (⟨𝑒, 𝑒⟩𝐸) 𝑓 ⟩𝐹
= ⟨(𝜙 (⟨𝑒, 𝑒⟩𝐸))1/2

𝑓 , (𝜙 (⟨𝑒, 𝑒⟩𝐸))1/2

𝑓 ⟩𝐹 ≥ 0.

Here we have used 𝜙 (⟨𝑒, 𝑒⟩𝐸) ≥ 0 because ⟨𝑒, 𝑒⟩𝐸 ≥ 0 and 𝜙 is a
∗
-homomorphism.
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3.4.3 Pushout

Let 𝐸 be a Hilbert 𝐵-module. Let 𝑓 : 𝐵 ↠ 𝐴 be a surjective
∗
-homomorphism. Define

𝑁𝑓 := {𝑥 ∈ 𝐸 | 𝑓 (⟨𝑥, 𝑥⟩𝐸) = 0}.

This is an ideal in 𝐸. Then 𝐸/𝑁𝑓 is a right 𝐴-module with

𝑞(𝑥) 𝑓 (𝑏) := 𝑞(𝑥𝑏)

where 𝑞 : 𝐸 ↠ 𝐸/𝑁𝑓 is the quotient map. It is easy to check this does not depend on the choice of 𝑏.

Define the 𝐴-valued inner-product on 𝐸/𝑁𝑓 :

⟨𝑞(𝑥), 𝑞(𝑦)⟩𝐸𝑓
:= 𝑓 (⟨𝑥,𝑦⟩𝐸) .

Definition 3.26. The pushout of 𝐸 along 𝑓 is the Hilbert 𝐴-module

𝐸𝑓 := 𝐸/𝑁𝑓

⟨·,·⟩𝐸𝑓

In particular:

Lemma 3.27. 𝐸𝑓 � 𝐸 ⊗𝑓 𝐴.

3.5 Kasparov’s stablisation theorem

Theorem 3.28 (Kasparov’s stablisation theorem). Let 𝐸 be a countably-generated Hilbert 𝐵-module. Then 𝐸 ⊕
H𝐵 � H𝐵 , whereH𝐵 := H ⊗ 𝐵.

Corollary 3.29. Any countably-generated Hilbert 𝐵-module is of the form 𝐸 � 𝑃H𝐵 for some bounded projec-
tion 𝑃 ∈ B𝐵 (H𝐵).

Corollary 3.30. 𝐸 is countably-generated iff K(𝐸) is 𝜎-unital.

Remark 3.31. Let 𝐸 be a Hilbert 𝐵-module. A (tight, normalised) frame of 𝐸 is a set of elements {𝑥𝑖}𝑖∈𝐼 of 𝐸,
such that for every 𝑒 ∈ 𝐸 one has ∑︁

𝑖∈𝐼
𝑥𝑖 ⟨𝑥𝑖 , 𝑒⟩ = 𝑒.

Note that 𝑥𝑖 ’s are not necessarily orthogonal to each other. (See [11] for general frames in Hilbert C
∗
-modules).

From Kasparov’s stablisation theorem we have

Theorem 3.32. Every countably-generated Hilbert C
∗-module has a frame.

Proof. We first apply the unitalisation to obtain 𝐸 ⊕ H𝐵
+ � H𝐵

+ . Kasparov’s stablisation theorem implies that

there is an isometry 𝑉 : 𝐸 →H𝐵
+ .H𝐵

+ has a basis {𝑒𝑖 ⊗ 1}𝑖∈N. Define

𝑥𝑖 := 𝑉
∗(𝑒𝑖 ⊗ 1).

Then {𝑥𝑖}𝑖∈N is a frame of 𝐸: ∑︁
𝑖∈N

𝑥𝑖 ⟨𝑥𝑖 , 𝑒⟩ =
∑︁
𝑖∈N

𝑉
∗(𝑒𝑖 ⊗ 1)⟨𝑉 ∗(𝑒𝑖 ⊗ 1), 𝑒⟩

=
∑︁
𝑖∈N

𝑉
∗(𝑒𝑖 ⊗ 1)⟨(𝑒𝑖 ⊗ 1),𝑉𝑒⟩

= 𝑉
∗
(∑︁
𝑖∈N
(𝑒𝑖 ⊗ 1)⟨(𝑒𝑖 ⊗ 1),𝑉𝑒⟩

)
= 𝑉

∗
𝑉𝑒 = 𝑒.

Note that {𝑥𝑖}𝑖∈N is not a basis because 𝑉𝑉
∗
≠ 1, so they are not orthogonal to each other. □
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March 8 and March 22, 2022

KK-theory: Kasparov’s picture
Speaker: Yufan Ge (Leiden University)

In this section, all C
∗
-algebras are separable, and all Hilbert C

∗
-modules are countably-generated.

4.1 Definition of Kasparov modules

Definition 4.1. A graded C
∗-algebra is a C

∗
-algebra 𝐴 together with an automorphism 𝛽𝐴 : 𝐴→ 𝐴 satisfy-

ing 𝛽
2

𝐴 = id.

Then 𝐴 decomposes as a direct sum of Banach spaces 𝐴 = 𝐴
0
⊕ 𝐴

1
, where 𝐴𝑖 is the (−1)𝑖 eigenspace of 𝛽 .

The decomposion is given by

𝑎 =
𝑎 + 𝛽𝐴 (𝑎)

2

+ 𝑎 − 𝛽𝐴 (𝑎)
2

.

We say deg(𝑎) = 0 if 𝑎 ∈ 𝐴
0
, and deg(𝑎) = 1 if 𝑎 ∈ 𝐴

1
. We say 𝑎 is homogeneous if 𝑎 ∈ 𝐴

0
or 𝑎 ∈ 𝐴

1
.

Definition 4.2. Let (𝐴, 𝛽𝐴) and (𝐵, 𝛽𝐵) be gradedC
∗
-algebras. A graded ∗-homomorphism is a

∗
-homomorphism𝜙 : 𝐴→

𝐵 such that the diagram commutes:

𝐴 𝐵

𝐴 𝐵.

𝜙

𝛽𝐴 𝛽𝐵

𝜙

Definition 4.3. Let (𝐴, 𝛽𝐴) be a graded C
∗
-algebra. The graded commutator on 𝐴 is defined as

[𝑎, 𝑏] := 𝑎𝑏 − (−1)deg(𝑎) deg(𝑏 )
𝑏𝑎

for all homogeneous elements 𝑎, 𝑏, and extend by linearality.

Definition 4.4. Let (𝐵, 𝛽𝐵) be a graded C
∗
-algebra. A graded Hilbert 𝐵-module is a Hilbert 𝐵-module 𝐸

together with a linear map 𝑆𝐸 : 𝐸 → 𝐸 (called the grading operator) such that 𝑆
2

𝐸 = id and

1. 𝑆𝐸 (𝑒𝑏) = 𝑆𝐸 (𝑒)𝛽𝐵 (𝑏) for all 𝑒 ∈ 𝐸 and 𝑏 ∈ 𝐵.
2. ⟨𝑆𝐸 (𝑒1

), 𝑆𝐸 (𝑒2
)⟩ = 𝛽𝐵 (⟨𝑒1

, 𝑒
2
⟩) for all 𝑒

1
, 𝑒

2
∈ 𝐸.

Then 𝐸 decomposes as a direct sum of Banach spaces 𝐸 = 𝐸
0
⊕ 𝐸

1
where 𝐸𝑖 is the (−1)𝑖-eigenspace of 𝑆𝐸 , and

satisfy

𝐸𝑖𝐵 𝑗 ⊆ 𝐸𝑖+𝑗 , ⟨𝐸𝑖 , 𝐸 𝑗 ⟩ ⊆ 𝐵𝑖+𝑗 .

Example 4.5. 1. The trivial grading on a C
∗
-algebra 𝐵 is 𝛽𝐵 = id. Every (ungraded) C

∗
-algebra can be

viewed as a trivially graded C
∗
-algebra.

2. Let 𝐵 be a C
∗
-algebra. The odd grading on 𝐵 ⊕ 𝐵 is given by 𝛽𝐵⊕𝐵 (𝑏, 𝑏′) := (𝑏′, 𝑏).

3. Let (𝐵, 𝛽𝐵) be a graded C
∗
-algebra. It is a graded Hilbert 𝐵-module: 𝑆𝐵 = 𝛽𝐵 .

4. Let (𝐸, 𝑆𝐸) be a graded Hilbert 𝐵-module. The induced grading on the C
∗
-algebra B𝐵 (𝐸) is given

by 𝑇 ↦→ 𝑆
−1

𝐸 𝑇𝑆𝐸 .

5. Let (𝐸, 𝑆𝐸) and (𝐹, 𝑆𝐹 ) be graded Hilbert 𝐵-modules. Then (𝐸 ⊕ 𝐹, 𝑆𝐸 ⊕ 𝑆𝐹 ) is a graded Hilbert 𝐵-module.

Definition 4.6. Let 𝐴, 𝐵 be graded C
∗
-algebras. A Kasparov (𝐴, 𝐵)-module is a triple (𝐸, 𝜙, 𝐹 ), where

• 𝐸 is a graded Hilbert 𝐵-module.

• 𝜙 : 𝐴→ B𝐵 (𝐸) is a graded ∗-homomorphism.

• 𝐹 ∈ B𝐵 (𝐸) has degree 1 with respect to the grading induced by 𝐸.
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satisfying the following “Fredholmness” conditions:

(F1) [𝐹, 𝜙 (𝑎)] ∈ K𝐵 (𝐸).

(F2) (𝐹 2 − 1)𝜙 (𝑎) ∈ K𝐵 (𝐸).

(F3) (𝐹 ∗ − 𝐹 )𝜙 (𝑎) ∈ K𝐵 (𝐸).

for all 𝑎 ∈ 𝐴.
We write E(𝐴, 𝐵) to denote the set of all Kasparov (𝐴, 𝐵)-modules.

4.2 Operations on Kasparov modules

4.2.1 Direct sum

Let E𝑖 := (𝐸𝑖 , 𝜙𝑖 , 𝐹𝑖) be Kasparov modules, 𝑖 = 1, . . . , 𝑛. Then (Example 4.5) ⊕𝑖𝐸𝑖 is a graded Hilbert C
∗
-module.

And ⊕𝑖E𝑖 := (⊕𝑖𝐸𝑖 , ⊕𝑖𝜙𝑖 , ⊕𝑖𝐹𝑖) is a Kasparov module.

4.2.2 Pullback

Let E := (𝐸, 𝜙, 𝐹 ) ∈ E(𝐴, 𝐵) and 𝑓 : 𝐶 → 𝐴 be a graded
∗
-homomorphism. Then (𝐸, 𝜙 ◦ 𝑓 , 𝐹 ) ∈ E(𝐶, 𝐵). This is

the pullback of E along 𝑓 , denoted by 𝑓
∗E.

4.2.3 Interior tensor product

Let E := (𝐸, 𝜙, 𝐹 ) ∈ E(𝐴, 𝐵) and 𝑓 : 𝐵 → 𝐶 be a graded
∗
-homomorphism. The interior tensor product E ⊗𝑓 𝐶 ∈

E(𝐴,𝐶) is defined as (𝐸 ⊗̂𝑓 𝐶,𝜙 ⊗ id, 𝐹 ⊗ id). The grading on 𝐸 ⊗̂𝑓 𝐶 is given by 𝑆𝐸 ⊗̂𝑓 𝐶 (𝑒 ⊗ 𝑐) := 𝑆𝐸 (𝑒) ⊗ 𝛽𝐶 (𝑐).

4.2.4 Pushout

Let E := (𝐸, 𝜙, 𝐹 ) ∈ E(𝐴, 𝐵) and 𝑓 : 𝐵 ↠ 𝐶 be a surjective graded
∗
-homomorphism. We can define the

pushout E𝑓 (see Definition 3.26). The pushout E𝑓 ∈ E(𝐴,𝐶) of the Kasparov module E ∈ E(𝐴, 𝐵) is defined
as (𝐸𝑓 , 𝜙 𝑓 , 𝐹𝑓 ) where

• The grading on 𝐸𝑓 is defined by 𝑆𝐸𝑓
(𝑞(𝑒)) := 𝑞(𝑆𝐸 (𝑒)).

• 𝜙 𝑓 (𝑎)𝑞(𝑒) := 𝑞(𝜙 (𝑎)𝑒).
• 𝐹𝑓 𝑞(𝑒) := 𝑞(𝐹𝑒).

Recall that 𝑞 : 𝐸 ↠ 𝐸𝑓 is the quotient map.

4.3 Kasparov’s KK-group

4.3.1 Homotopies of Kasparov modules

Definition 4.7. Let E𝑖 := (𝐸𝑖 , 𝜙𝑖 , 𝐹𝑖) ∈ E(𝐴, 𝐵), 𝑖 = 1, 2. We say they are isomorphic (write E
1
� E

2
), there

exists an isomorphism between Hilbert 𝐵-modules𝜓 : 𝐸
1
→ 𝐸

2
such that the following diagram commutes:

𝐸
1

𝐸
1

𝐸
2

𝐸
2

𝜙 (𝑎), 𝐹

𝜓 𝜓

𝜙 (𝑎), 𝐹

Should an isomorphism of Hilbert C
∗
-modules always preserve inner products (hence unitary)?

Example 4.8. Let E𝑖 be Kasparov modules, 𝑖 ∈ {1, . . . , 𝑛}. Let 𝜎 be a permutation of {1, . . . , 𝑛}. Then ⊕𝑖E𝑖 �
⊕𝑖E𝜎 (𝑖 )
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Let 𝐵 be a C
∗
-algebra. Let I𝐵 := C[0, 1] ⊗ 𝐵 � C( [0, 1], 𝐵) be the mapping cylinder of 𝐵. Let ev𝑡 : I𝐵 → 𝐵

be the evaluation map. If 𝐵 is graded by 𝛽𝐵 , then we use id ⊗𝛽𝐵 to grade I𝐵.

Definition 4.9. Let E
0
, E

1
∈ E(𝐴, 𝐵). A homotopy between E

0
and E

1
is E ∈ E(𝐴, I𝐵) such that E ⊗

ev𝑖
𝐵 � E𝑖

for 𝑖 = 0, 1.

Define the equivalence relation ∼
h
on E(𝐴, 𝐵):

E
0
∼

h
E

1
if they are connected by a finite set of homotopies in E(𝐴, I𝐵).

It is not yet clear at the moment whether this is a true equivalence relation: the transitivity holds but we still

need to show that ∼
h
is reflexive and symmetric. For those we need some lemmas.

Lemma 4.10. Let E ∈ E(𝐴, 𝐵). Let 𝑓 : 𝐵 → 𝐶 and 𝑔 : 𝐶 → 𝐷 be graded ∗-homomorphisms. Then

(𝐸 ⊗𝑓 𝐶) ⊗𝑔 𝐷 � 𝐸 ⊗𝑔◦𝑓 𝐷.

Proof. Let E = (𝐸, 𝜙, 𝑓 ). Define the right 𝐷-module map

𝑈 : (𝐸 ⊗𝑓 𝐶) ⊗𝑔 𝐷 → 𝐸 ⊗𝑔◦𝑓 𝐷, 𝑒 ⊗𝑓 𝑐 ⊗𝑔 𝑑 ↦→ 𝑒 ⊗𝑔◦𝑓 𝑔(𝑐)𝑑.

Clearly𝑈 is injective. For the surjectivity: take an approximate unit {𝑢𝑖} of 𝐵. Then 𝑒𝑢𝑖 ⊗𝑔◦𝑓 𝑑 → 𝑒 ⊗𝑔◦𝑓 𝑑 , and

𝑈 (𝑒 ⊗𝑓 𝑓 (𝑢𝑖) ⊗𝑔 𝑑) = 𝑒 ⊗𝑔◦𝑓 𝑔(𝑓 (𝑢𝑖))𝑑 = 𝑒𝑢𝑖 ⊗𝑔◦𝑓 𝑑 → 𝑒 ⊗𝑔◦𝑓 𝑑. □

Lemma 4.11. Let E ∈ E(𝐴, 𝐵) and 𝑓 : 𝐵 ↠ 𝐶 be a surjective graded ∗-homomorphism. Then E ⊗𝑓 𝐶 � E𝑓 .

Remark 4.12. Wemight have two different notions of compactness while working with homotopies of Kasparov

modules. Let 𝐸 be a Hilbert I𝐵-module and 𝐹 ∈ B
I𝐵 (𝐸). Consider the following two statements:

1. 𝐹 ∈ K
I𝐵 (𝐸).

2. For each 𝑡 ∈ [0, 1]: (ev𝑡 )∗𝐹 ∈ K𝐵 (𝐸 ⊗ev𝑡
𝐵). Here (ev𝑡 )∗𝐹 is the operator 𝑇 ⊗

ev𝑡
id acting on 𝐸 ⊗

ev𝑡
𝐵.

In fact: these two conditions are equivalent (Why?). This should be based on the compactness of [0, 1], and
some property of K (?). For instance, we have an isomorphism of C

∗
-algebras

K
I𝐵 (C[0, 1] ⊗ 𝐸) � C( [0, 1],K𝐵 (𝐸))

for a Hilbert 𝐵-module 𝐸 (?) But this does not hold trivially if we replace K by B. (Why?) I could remember — again

read from somewhere — that this holds if we replace the norm topology on B by the strict topology. But I need to find a proof of it. To be completed.

Proposition 4.13. ∼
h
is an equivalence relation.

Proof. • By definition, ∼
h
is transitive.

• We prove ∼
h
is symmetric. If E ∈ E(𝐴, I𝐵) is a homotopy between E

0
, E

1
∈ E(𝐴, 𝐵). That is,

E ⊗
ev𝑖

𝐵 � E𝑖 , 𝑖 = 0, 1.

Define 𝜓 : C[0, 1] → C[0, 1] by 𝜓 (𝑓 ) (𝑡) := 𝑓 (1 − 𝑡). Then 𝜓 ⊗ id : I𝐵 → I𝐵 satisfies 𝜓 ◦ ev𝑖 = ev
1−𝑖

for 𝑖 = 0, 1. Therefore

E ⊗𝜓⊗id
I𝐵 ⊗

ev𝑖
𝐵 � E

1−𝑖 , 𝑖 = 0, 1.

So E ⊗𝜓⊗id
I𝐵 is a homotopy between E

1
and E

0
.

• Finally, ∼
h
is reflexive. Let E ∈ E(𝐴, 𝐵). Let 𝜙 : 𝐵 → I𝐵 be the constant function 𝜙 (𝑏) (𝑡) := 𝑏.

Then E ⊗𝜙 I𝐵 ∈ E(𝐴, I𝐵) is a homotopy betweeen E and E. □
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4.3.2 Operator homotopies of Kasparov modules

Lemma 4.14. Let E
1
, E

2
∈ E(𝐴, 𝐵). Let 𝑓 : 𝐵 → 𝐶 be a graded ∗-homomorphism. Then

(E
1
⊕ E

2
) ⊗𝑓 𝐶 � E1

⊗𝑓 𝐶 ⊕ E2
⊗𝑓 𝐶.

Proof. Let E𝑖 = (𝐸𝑖 , 𝜙𝑖 , 𝐹𝑖) for 𝑖 = 1, 2. Define

𝑈 : (𝐸
1
⊕ 𝐸

2
) ⊗𝑓 𝐶 → (𝐸1

⊗𝑓 𝐶) ⊕ (𝐸2
⊗𝑓 𝐶), (𝑒

1
, 𝑒

2
) ⊗𝑓 𝑐 ↦→ (𝑒1

⊗𝑓 𝑐, 𝑒2
⊗𝑓 𝑐) .

This is an isomorphism of Hilbert C
∗
-modules. It remains to check the Fredholmness conditions (F1), (F2) and

(F3) in Kasparov modules, which are easy because the corresponding operators are just direct sums of compact

operators, hence compact. □

Corollary 4.15. Let E
0
, E

1
, F

0
, F

1
∈ E(𝐴, 𝐵) such that E

0
is homotopic to E

1
and F

0
is homotopic to F

1
.

Then E
0
⊕ F

0
is homotopic to E

1
⊕ F

1
.

Proof. Let E ∈ E(𝐴, I𝐵) be a homotopy connecting E
0
and E

1
, and F ∈ E(𝐴, I𝐵) be a homotopy connecting F

0

and F
1
. Then

(E ⊕ F ) ⊗
ev

0

𝐵 � E ⊗
ev

0

𝐵 ⊕ F ⊗
ev

0

𝐵 � E
0
⊕ F

0
,

and

(E ⊕ F ) ⊗
ev

1

𝐵 � E ⊗
ev

1

𝐵 ⊕ F ⊗
ev

1

𝐵 � E
1
⊕ F

1
.

So E
0
⊕ F

0
is homotopic to E

1
⊕ F

1
via E ⊕ F . □

Definition 4.16 (Degenerate cycles). Let E = (𝐸, 𝜙, 𝐹 ) ∈ E(𝐴, 𝐵). We say E is degenerate, if it satisfies the
following “Fredholmness” conditions:

(D1) [𝐹, 𝜙 (𝑎)] = 0.

(D2) (𝐹 2 − 1)𝜙 (𝑎) = 0.

(D3) (𝐹 ∗ − 𝐹 )𝜙 (𝑎) = 0.

for all 𝑎 ∈ 𝐴.
Denote the set of degenerate Kasparov (𝐴, 𝐵)-modules by D(𝐴, 𝐵).

Definition 4.17. Let E
0
, E

1
∈ E(𝐴, 𝐵). We say they are operator homotopic if there exists a Hilbert 𝐵-

module 𝐸, 𝜙 : 𝐴 → B𝐵 (𝐸) a graded ∗-homomorphism, and a norm-continuous path of operators 𝐹𝑡 ∈ B𝐵 (𝐸)
(𝑡 ∈ [0, 1]), such that

• E𝑡 := (𝐸, 𝜙, 𝐹𝑡 ) ∈ E(𝐴, 𝐵) for all 𝑡 ∈ (0, 1).
• E𝑖 � (𝐸, 𝜙, 𝐹𝑖) for 𝑖 = 0, 1.

Define the equivalence relation ∼
oh

on E(𝐴, 𝐵):
E

0
∼

oh
E

1
if there exists F

0
, F

1
∈ D(𝐴, 𝐵), such that E

0
⊕ F

0
is operator homotopic to E

1
⊕ F

1
.

We need to prove that

Proposition 4.18. ∼
oh

is an equivalence relation.

Proof. • Reflexivity is obvious: 0 := (0, 0, 0) ∈ D(𝐴, 𝐵) satisfies E ⊕ 0 ∼
oh
E ⊕ 0 for any E ∈ E(𝐴, 𝐵).

• Symmetry: take the obvious path E′𝑡 := E
1−𝑡 .

• Transitivity: let E
1
∼

oh
E

2
and E

2
∼

oh
E

3
. That is, there exists F

1
, F

2
,G

2
,G

3
im D(𝐴, 𝐵) such that

E
1
⊕ F

1
is operator homotopic to E

2
⊕ F

2
, E

2
⊕ G

2
is operator homotopic to E

3
⊕ G

3
.

Therefore

E
1
⊕ F

1
⊕ G

2
is operator homotopic to E

2
⊕ F

2
⊕ G

2
,

is operator homotopic to E
3
⊕ G

3
⊕ F

2
.

Notice that the sum of degenerate Kasparov modules is degenerate. So both F
1
⊕ G

2
and G

3
⊕ F

2
are

degenerate cycles. This finishes the proof. □
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4.3.3 Definition of KK-groups

Definition 4.19. According to Proposition 4.13 and Proposition 4.18 we define

KK(𝐴, 𝐵) := E(𝐴, 𝐵)/∼
h
, K̂K(𝐴, 𝐵) := E(𝐴, 𝐵)/∼

oh
.

Eventually we will show that both of them are abelian groups.

Remark 4.20. We remark on the size issues (arising from the discussion of Marten and Bram). Let 𝐵 be a

C
∗
-algebra, then the collection of Hilbert 𝐵-modules is not a set (for example, consider 𝐵 = C, then the

collection of Hilbert spaces is a class but not a set because for every set we may consider the free vector space

generated by this set, equipped with a suitable Hilbert space structure). This happens to Kasparov modules as

well.

How to overcome this? In the definition for E(𝐴, 𝐵) we take only countably-generated Hilbert 𝐵-modules,

and the C
∗
-algebras 𝐴 and 𝐵 are also assumed to be separable. Then Kasparov’s stablisation theorem claims

that every such Hilbert module is a direct summand of H𝐵 . That is, there is an isometry 𝑉 : 𝐸 → H𝐵 . We

identify 𝐸 with its image; this identifies 𝐸 with a submodule ofH𝐵 . This identification is allowed because in the

definition of KK-groups we will only look at unitary equivalence classes of Kasparov modules. The collection of

Hilbert 𝐵-submodules ofH𝐵 (up to unitary equivalence) forms a set. This allows us to define a group structure

at least on the unitary equivalence classes in E(𝐴, 𝐵).

Lemma 4.21. If E ∈ D(𝐴, 𝐵). Then E ∼
h

0.

Proof. Let E = (𝐸, 𝜙, 𝐹 ). As an ideal of the C
∗
-algebra C[0, 1], C

0
(0, 1] is a Hilbert C[0, 1]-module, 𝐸 ⊗ C

0
(0, 1]

denotes the exterior tensor product, which becomes a Hilbert I𝐵-module.

Define

˜E := (𝐸 ⊗̂ C
0
(0, 1], 𝜙 ⊗ id, 𝐹 ⊗ id) ∈ E(𝐴, I𝐵) .

Clearly
˜E ⊗

ev
0

C[0, 1] = 0, and notice that there is an isomorphism

(𝐸 ⊗̂ C
0
[0, 1)) ⊗

ev
1

C[0, 1] → 𝐸, 𝑒 ⊗
ev

1

𝑓 ↦→ 𝑓 (0)𝑒.

Then
˜E is a homotopy connecting E and 0. □

Remark 4.22. One should notice that the degeneracy of (𝐸, 𝜙, 𝐹 ) is essential: the operator id acting on the

Hilbert C[0, 1]-module C
0
(0, 1] is not compact. So the operators

[𝐹, 𝜙 (𝑎)] ⊗ id, (𝐹 2 − 1)𝜙 (𝑎) ⊗ id, (𝐹 ∗ − 𝐹 )𝜙 (𝑎) ⊗ id ∈ B
I𝐵 (𝐸 ⊗ C

0
(0, 1])

are no longer compact unless the Kasparov module (𝐸, 𝜙, 𝐹 ) is degenerate.

Lemma 4.23. Let E
0
, E

1
∈ E(𝐴, 𝐵). If E

0
∼

oh
E

1
, then E

0
∼

h
E

1
.

As a corollary, the canonical map 𝜇 : K̂K(𝐴, 𝐵) → KK(𝐴, 𝐵) is surjective.

Theorem 4.24. Both KK(𝐴, 𝐵) and K̂K(𝐴, 𝐵) are abelian groups, and the canonical map 𝜇 : K̂K(𝐴, 𝐵) →
KK(𝐴, 𝐵) is a surjective group homomorphism.

If 𝐴 is 𝜎-unital, then 𝜇 is an isomorphism.

Proof. We only prove that both KK(𝐴, 𝐵) and K̂K(𝐴, 𝐵) are abelian groups. For this we need to construct the

addition, neutral element and inverse elements. The addition is given by

[E
1
] + [E

2
] := [E

1
⊕ E

2
] .

Clearly the zero Kasparov module 0 represents the neutral element in both KK(𝐴, 𝐵) and K̂K(𝐴, 𝐵). Let E =

(𝐸, 𝜙, 𝐹 ). We construct the inverse of E as follows.

Let 𝐸 be graded by 𝑆𝐸 and 𝐴 be graded by 𝛽𝐴. Define

𝐸− := (𝐸,−𝑆𝐸), 𝜙− := 𝜙 ◦ 𝛽𝐴, 𝐹− := −𝐹 .
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and define −E := (𝐸−, 𝜙−, 𝐹−). We claim that [−E] is the inverse of [E]: notice that

E ⊕ (−E) = (𝐸 ⊕ 𝐸−, 𝜙 ⊕ 𝜙 ◦ 𝛽𝐴, 𝐹 ⊕ −𝐹 ),

which is operator homotopic to the degenerate Kasparov module

(𝐸 ⊕ 𝐸−, 𝜙 ⊕ 𝜙 ◦ 𝛽𝐴,
(

0 1

1 0

)
)

via the operator homotopy

𝐹𝑡 :=

(
cos

𝜋𝑡
2
𝐹 sin

𝜋𝑡
2

sin
𝜋𝑡
2
− cos

𝜋𝑡
2
𝐹

)
.

So E ⊕ (−E) ∼
oh

0. This also implies E ⊕ (−E) ∼
h

0 by the previous lemma. □

Remark 4.25. Notice that one needs to check that

1. [𝐹𝑡 , 𝜙 (𝑎) ⊕ 𝜙− (𝑎)] ∈ K𝐵 (𝐸 ⊕ 𝐸−).
2. (𝐹 2

𝑡 − 1) (𝜙 (𝑎) ⊕ 𝜙− (𝑎)) ∈ K𝐵 (𝐸 ⊕ 𝐸−).
3. (𝐹𝑡 − 𝐹 ∗𝑡 ) (𝜙 (𝑎) ⊕ 𝜙− (𝑎)) ∈ K𝐵 (𝐸 ⊕ 𝐸−).

The “most” non-trivial part is the second condition because it is non-linear. This is usually the most difficult

condition to check in (the bounded picture of) Kasparov modules. Using unbounded Kasparov modules,

however, overcomes this difficulty.

The most prominent construction in KK-theory is the Kasparov product. Its existence and uniqueness was

shown by Kasparov [15] in an extremely technical fashion. This was simplified by Connes and Skandalis in [5]

by using a “connection” condition, which will be discussed later.

Definition 4.26 (Kasparov product). Let E
1
= (𝐸

1
, 𝜙

1
, 𝐹

1
) ∈ E(𝐴, 𝐵) and E

2
= (𝐸

2
, 𝜙

2
, 𝐹

2
) ∈ E(𝐵,𝐶). A

Kasparov product of E
1
and E

2
is E = (𝐸, 𝜙, 𝐹 ) ∈ E(𝐴,𝐶) satisfying:

1. 𝐸 = 𝐸
1
⊗𝜙

2

𝐸
2
.

2. 𝜙 = 𝜙 ⊗𝜙
2

id.

3. 𝐹 is an 𝐹
2
-connection. That is, [(

0 𝑇
∗
𝑥

𝑇𝑥 0

)
,

(
𝐹

2
0

0 𝐹

)]
∈ K𝐵 (𝐸2

⊕ 𝐸)

for all 𝑥 ∈ 𝐸
1
, where 𝑇𝑥 ∈ B𝐵 (𝐸2

, 𝐸) by 𝑇 (𝑒
2
) = 𝑥 ⊗𝜙

2

𝑒
2
.

4. 𝜙 (𝑎) [𝐹
1
⊗𝜙

2

id, 𝐹 ]𝜙 (𝑎)∗ ≥ 0 mod K𝐶 (𝐸), for all 𝑎 ∈ 𝐴.

Theorem 4.27. If 𝐴 is separable. Then the Kasparov product as above exists and is unique up to operator
homotopy.

March 22 and March 29, 2022

KK-theory: Cuntz’s picture
Speaker: Yufan Ge (Leiden University)

The standing assumption of this section is that all C
∗
-algebras are separable and 𝜎-unital.
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5.1 Cuntz’s KKh-group

Definition 5.1. Let 𝐴 and 𝐵 be C
∗
-algebras. A KK

h
(𝐴, 𝐵)-cycle is a pair (𝜙+, 𝜙−), where 𝜙± : 𝐴→M(K ⊗ 𝐵)

are
∗
-homomorphisms, such that

𝜙+(𝑎) − 𝜙− (𝑎) ∈ K ⊗ 𝐵, for all 𝑎 ∈ 𝐴.

Denote the set of all KK
h
(𝐴, 𝐵)-cycles by F(𝐴, 𝐵).

Definition 5.2. Two KK
h
(𝐴, 𝐵)-cycles (𝜙+, 𝜙−) and (𝜓+,𝜓−) are homotopic if there exists a path of KK

h
-

cycles (𝜆𝑡+, 𝜆𝑡−) ∈ F(𝐴, 𝐵), 𝑡 ∈ [0, 1], continuous in the sense that:

1. 𝑡 ↦→ 𝜆
𝑡
± are strictly continuous.

2. 𝑡 ↦→ 𝜆
𝑡
+ − 𝜆𝑡− is norm continuous.

3. 𝜆
0

± = 𝜙
0

± and 𝜆
1

± = 𝜓±.

We write (𝜙+, 𝜙−) ∼h
(𝜓+,𝜓−) if they are homotopic.

Remark 5.3. Given a KK
h
(𝐴, 𝐵)-cycle (𝜙+, 𝜙−), one can assign to it a Kasparov (𝐴, 𝐵)-module(

H𝐵 ⊕ H𝐵,

(
𝜙+

𝜙−

)
,

(
0 1

1 0

))
.

Notice that the Fredholmness condition (F2) implies that[(
0 1

1 0

)
,

(
𝜙+

𝜙−

)]
=

(
𝜙+ − 𝜙−

𝜙− − 𝜙+

)
is compact. This justifies the condition 2 in the previous definition.

Definition 5.4.
KK

h
(𝐴, 𝐵) := F(𝐴, 𝐵)/∼

h
.

Lemma 5.5. Let (𝜙+, 𝜙−) ∈ F(𝐴, 𝐵). If 𝜙+ = 𝜙− , then (𝜙+, 𝜙−) ∼h
(0, 0).

Proof. We need the following

Lemma 5.6. If 𝐵 is stable, i.e. 𝐵 � K ⊗ 𝐵. Then there exists a path (𝑣𝑡 )𝑡 of isometries inM(𝐵), such that:

• 𝑡 ↦→ 𝑣𝑡 is strictly continuous.

• 𝑣
1
= 1.

• 𝑣𝑡𝑣
∗
𝑡 → 0 as 𝑡 → 0.

Since K ⊗ 𝐵 is stable, we can choose 𝑣+ and define

𝜆
𝑡
± := 𝑣𝑡𝜙±𝑣

∗
𝑡 .

Then (𝜙𝑡
+, 𝜙

𝑡
−) is a homotopy connecting (𝜙+, 𝜙−) and (0, 0). □

Remark 5.7. We would like to comment that [14, Lemma 1.1.17] is wrong unless the net {𝑚𝑖} is a sequence. This
is because a convergence net need not be bounded, so Uniform Boundedness Principle could not be applied to

this context.

An example of a convergent net which is not bounded: consider the net {𝑥𝑖}𝑖∈Z indexed by the direct

set (Z, ≥) where 𝑥𝑖 = −𝑖 if 𝑖 < 0 and 𝑥𝑖 = 0 otherwise. The net converges to 0 but it is unbounded since for

any 𝑁 > 0, 𝑥−⌊𝑁 ⌋−1
> 𝑁 .
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Proposition 5.8. Let 𝐵 be a stable C
∗-algebra. Then there exists an isomorphism

𝜃𝐵 : M𝑛 (𝐵)
�−→ 𝐵, (𝑏𝑖 𝑗 ) ↦→

∑︁
𝑖, 𝑗

𝑤𝑖𝑏𝑖 𝑗𝑤
∗
𝑗 ,

where𝑤𝑖 ∈ M(𝐵) for 𝑖 = 1, . . . , 𝑛 are isometries satisfying

𝑤
∗
𝑖𝑤 𝑗 = 𝛿𝑖 𝑗 and

∑︁
𝑖

𝑤𝑖𝑤
∗
𝑖 = 1.

So such a 𝜃𝐵 is an inner isomorphism.

Lemma 5.9. If 𝐵 is stable. Then there exists a path 𝑣𝑡 of isometries inM(𝐵), such that

1. 𝑡 ↦→ 𝑣𝑡 is strictly continuous.

2. 𝑣
1
= 1.

3. 𝑣𝑡𝑣
∗
𝑡 → 0 strictly.

Corollary 5.10. If 𝐵 is stable. Then every isometry inM(𝐵) is connected to 1 ∈ M(𝐵) via a strictly continuous
path of isometries.

Proof. Set𝑤𝑡 = 𝑣
∗
𝑡𝑤𝑣𝑡 + 1 − 𝑣𝑡𝑣∗𝑡 . □

Lemma 5.11. Let 𝐵 be a stable C
∗-algebra. Let 𝜃𝐵 : M

2
(𝐵) → 𝐵 as in Proposition 5.8. Let 𝑗 : 𝐵 → M

2
(𝐵) be the

corner embedding 𝑏 ↦→
(
𝑏 0

0 0

)
. Then 𝜃𝐵 ◦ 𝑗 is homotopic to id𝐵 .

Proof. By Proposition 5.8, there exists an isometry𝑤 ∈ M(𝐵) such that 𝜃𝐵 ◦ 𝑗 (𝑏) = 𝑤𝑏𝑤
∗
. By Lemma 5.10, we

find a strictly continuous path𝑤𝑡 connecting 1 and𝑤 . We conclude that𝑤𝑡𝑏𝑤
∗
𝑡 → 𝑏 in norm: this is because

∥𝑤𝑡𝑏𝑤
∗
𝑡 −𝑤𝑡

0

𝑏𝑤
∗
𝑡

0

∥ ≤ ∥𝑤𝑡𝑏𝑤
∗
𝑡 −𝑤𝑡

0

𝑏𝑤
∗
𝑡 ∥ + ∥𝑤𝑡

0

𝑏𝑤
∗
𝑡 −𝑤∗𝑡

0

𝑏𝑤
∗
𝑡

0

∥
≤ ∥𝑤𝑡 −𝑤𝑡

0

∥∥𝑏∥ + ∥𝑏∥∥𝑤∗𝑡 −𝑤∗𝑡
0

∥ → 0

as 𝑡 → 𝑡
0
. Notice that we use the fact that𝑤𝑡 are isometries. □

Definition 5.12. Define an addition operation “+” on KK
h
(𝐴, 𝐵) as follows:

[𝜙+, 𝜙−] + [𝜓+,𝜓−] :=

[
𝜃𝐵 ◦

(
𝜙+

𝜓+

)
, 𝜃𝐵 ◦

(
𝜙−

𝜓−

)]
.

Proposition 5.13. The addition is well-defined and turns KK
h
(𝐴, 𝐵) into an abelian group with neutral element

given by [0, 0].
Proof. • Well-definedness: this is done by checking a homotopy.

• Associativity. We have

𝜃𝐵
©«𝜃𝐵

(
𝜙+

𝜓+

)
𝜆+

ª®¬ ∼h
𝜃𝐵

©«
𝜃𝐵

(
𝜙+

𝜓+

)
𝜃𝐵

(
𝜆+

0

)ª®®®¬
= 𝜃𝐵 (id ⊗𝜃𝐵)

©«
𝜙+

𝜓+
𝜆+

0

ª®®®¬
∼

h
𝜃𝐵 (id ⊗𝜃𝐵)

©«
𝜙+

0

𝜓+
𝜆+

ª®®®¬
∼

h
𝜃𝐵

©«
𝜙+

𝜃𝐵

(
𝜓+

𝜆+

)ª®¬
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So

( [𝜙+, 𝜙−] + [𝜓+,𝜓−]) + [𝜆+, 𝜆−] = [𝜙+, 𝜙−] + ([𝜓+,𝜓−] + [𝜆+, 𝜆−]) .

• Neutral element and inverse. Notice that

[𝜙+, 𝜙−] + [𝜙−, 𝜙+] =
[
𝜃𝐵 ◦

(
𝜃+

𝜃−

)
, 𝜃𝐵 ◦

(
𝜃−

𝜃+

)]
∼

h

[
𝜃𝐵 ◦

(
𝜃+

𝜃−

)
, 𝜃𝐵 ◦

(
𝜃+

𝜃−

)]
∼

h
[0, 0] . □

5.2 From quasihomomorphisms to Kasparov modules

Let Ψ : M(K ⊗ 𝐵) �−→ B𝐵 (H𝐵) be the isomorphism that extends the isomorphism

K ⊗ 𝐵 �−→ K𝐵 (H𝐵), 𝑒𝑖 𝑗 ⊗ 𝑎𝑏∗ ↦→ Θ𝑎𝑖 ,𝑏 𝑗
. (2)

For (𝜙+, 𝜙−) ∈ F(𝐴, 𝐵): let ˆH𝐵 be the evenly graded Hilbert 𝐵-moduleH𝐵 ⊕H𝐵 . Define the associated Kasparov

module

E(𝜙+, 𝜙−) :=

(
ˆH𝐵,

(
Ψ ◦ 𝜙+

Ψ ◦ 𝜙−

)
,

(
1

1

))
∈ E(𝐴, 𝐵).

Lemma 5.14. The map

KK
h
(𝐴, 𝐵) → KK(𝐴, 𝐵), [𝜙+, 𝜙−] ↦→ [E(𝜙+, 𝜙−)]

is a group homomorphism.

Proof. • We first prove it is well-defined. Let (𝜆𝑡+, 𝜆𝑡−) be a homotopy connecting (𝜙+, 𝜙−) and (𝜓+,𝜓−).
Define

𝜆± : 𝐴→M(I(K ⊗ 𝐵)), (𝜆±(𝑎) 𝑓 ) (𝑡) := 𝜆
𝑡
±(𝑎) (𝑓 (𝑡))

for 𝑓 ∈ I(K ⊗ 𝐵) � K ⊗ I𝐵. So (𝜆+, 𝜆−) ∈ F(𝐴, I𝐵).
We claim that (ev𝑡 )∗E(𝜆+, 𝜆−) � E(𝜆𝑡+, 𝜆𝑡−) for 𝑡 ∈ [0, 1]. We have an isomorphism of graded Hilbert 𝐵-

modules

𝜒 : (ev𝑡 )∗ ˆH
I𝐵

�−→ ˆH𝐵, (𝑥,𝑦) ⊗
ev𝑡

𝐵 ↦→ ((ev𝑡 (𝑥𝑖)), (ev𝑡 (𝑦𝑖))).

To prove that two Kasparov modules above are homotopic it suffices to check the following diagram

commutes:

(ev𝑡 )∗ ˆH
I𝐵 (ev𝑡 )∗ ˆH

I𝐵

ˆH𝐵
ˆH𝐵 .

(ev𝑡 )∗
(
Ψ◦𝜆+ (𝑎)

Ψ◦𝜆− (𝑎)

)

𝜒 𝜒(
Ψ◦𝜆𝑡+ (𝑎)

Ψ◦𝜆𝑡− (𝑎)

)

And this is done by checking on the elements in M
2
(K ⊗ I𝐵), which form a stricly dense subset

of M
2
(M(K ⊗ I𝐵)).

• Next we show that 𝜇 is a group homomorphism. For this we need to construct an isomorphism

[E((𝜙+, 𝜙−) + (𝜓+,𝜓−))]
�−→ [E(𝜙+, 𝜙−)] + [E(𝜓+,𝜓−)],

as follows. Let 𝑣
1
, 𝑣

2
∈ M(K ⊗ 𝐵) be isometries. Write𝑤𝑖 = Ψ(𝑣𝑖) and define the isomorphism

ˆH𝐵 ⊕ ˆH𝐵

�−→ ˆH𝐵, (𝑥
1
, 𝑥

2
) ⊕ (𝑦

1
, 𝑦

2
) ↦→ (𝑤

1
𝑥

1
+𝑤

2
𝑦

1
,𝑤

1
𝑥

2
+𝑤

2
𝑦

2
).
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This isomorphism gives the following homotopies:

E(𝜙+, 𝜙−) + E(𝜓+,𝜓−) =
©«

ˆH𝐵 ⊕ ˆH𝐵,

©«
(
Ψ ◦ 𝜙+

Ψ ◦ 𝜙−

)
(
Ψ ◦𝜓+

Ψ ◦𝜓−

)ª®®®¬ ,
©«
(

1

1

)
(

1

1

)ª®®®¬
ª®®®¬

∼
h

©«
ˆH𝐵,

©«
Ψ ◦ 𝜃𝐵

(
𝜙+

𝜓+

)
Ψ ◦ 𝜃𝐵

(
𝜙−

𝜓−

)ª®®®¬ ,
(

1

1

)ª®®®¬
= E

(
𝜃𝐵 ◦

(
𝜙+

𝜓+

)
, 𝜃𝐵 ◦

(
𝜙−

𝜓−

))
= E((𝜙+, 𝜙−) + (𝜓+,𝜓−)) . □

Remark 5.15. The map KK
h
(𝐴, 𝐵) → KK(𝐴, 𝐵), [𝜙+, 𝜙−] ↦→ [E(𝜙+, 𝜙−)] is in fact an isomorphism.

5.3 Functoriality

5.3.1 Pullback

The pullback is easily formed.

Definition 5.16. Let 𝑓 : 𝐷 → 𝐴 be a
∗
-homomorphism. The pullback 𝑓

∗
is the induced group homomorphism

𝑓
∗

: KK
h
(𝐴, 𝐵) → KK

h
(𝐷, 𝐵), 𝑓

∗( [𝜙+, 𝜙−]) := [𝜙+ ◦ 𝑓 , 𝜙− ◦ 𝑓 ] .

5.3.2 Pushout

The pushout needs more work.

Definition 5.17. A
∗
-homomorphism 𝜙 : 𝐴 → 𝐵 is called quasi-unital if there exists 𝑝 ∈ M(𝐵) such

that 𝜙 (𝐴)𝐵 = 𝑝𝐵.

This is equivalent to: if the hereditory subalgebra of 𝐵 generated by 𝜙 (𝐴) is 𝑝𝐵𝑝 for some 𝑝 ∈ M(𝐵).
Let Hom

qu
(𝐴, 𝐵) denote the set of quasi-unital ∗-homomorphisms 𝐴→ 𝐵.

Lemma5.18 (Higson). A ∗-homomorphism𝜙 : 𝐴→ 𝐵 if quasi-unital iff there exists a ∗-homomorphism𝜙 : M(𝐴) →
M(𝐵) extending 𝜙 .

Corollary 5.19. The composition of two quasi-unital ∗-homomorphisms is quasi-unital.

We introduce a stronger homotopy relation ∼
qu

on Hom
qu
(𝐴, 𝐵).

Definition 5.20. We call 𝜙
0
, 𝜙

1
∈ Hom

qu
(𝐴, 𝐵) strongly homotopic (denoted by 𝜙

0
∼

qu
𝜙

1
), if there exists 𝜙 ∈

Hom
qu
(𝐴, I𝐵) such that ev𝑖 ◦𝜙 = 𝜙𝑖 , 𝑖 = 0, 1.

Recall that 𝜙
0
∼ 𝜙

1
denotes 𝜙

0
and 𝜙

1
are homotopic. Define

[𝐴, 𝐵] := Hom(𝐴, 𝐵)/∼, [𝐴, 𝐵]
qu

:= Hom
qu
(𝐴, 𝐵)/∼

qu
.

Theorem 5.21. If 𝐴 and 𝐵 are 𝜎-unital C
∗-algebras and 𝐵 is stable. Then there is a bijection

[𝐴, 𝐵]
qu

�−→ [𝐴, 𝐵]

(sending the strongly homotopy class of a quasi-unital ∗-homomorphism in [𝐴, 𝐵]
qu

to its homotopy class in [𝐴, 𝐵]).

If 𝑓 : K⊗𝐵 → K⊗𝐶 be a quasi-unital
∗
-homomorphism. By Lemma 5.18, 𝑓 extends to a

∗
-homomorphismM(K⊗

𝐵) → M(K ⊗ 𝐶).
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Definition 5.22. The pushout 𝑓∗ is the induced group homomorphism

KK
h
(𝐴, 𝐵) → KK

h
(𝐴,𝐶), [𝜙+, 𝜙−] ↦→ [𝑓 ◦ 𝜙+, 𝑓 ◦ 𝜙−] .

Lemma 5.23. Let (𝜙+, 𝜙−), (𝜓+,𝜓−) ∈ F(𝐴, 𝐵) and assume 𝜙+(𝑎)𝜓+(𝑎) = 0 = 𝜙− (𝑎)𝜓− (𝑎). Then [𝜙+, 𝜙−] +
[𝜓+,𝜓−] = [𝜙+ +𝜓+, 𝜙− +𝜓−].

Proof. Define

𝜆
𝑡
± := 𝜃𝐵

(
𝜙± 0

0 0

)
+ 𝜃 ◦

(
cos 𝑡 sin 𝑡

− sin 𝑡 cos 𝑡

) (
0 0

0 𝜓±

) (
cos 𝑡 − sin 𝑡

sin 𝑡 cos 𝑡

)
.

This is a homotopy connecting

(
𝜃𝐵

(
𝜙+

𝜓+

)
, 𝜃𝐵

(
𝜙−

𝜓−

))
and (𝜙+ +𝜓+, 𝜙− +𝜓−). □

Lemma 5.24. Let (𝜙+, 𝜙−) ∈ F(𝐴, 𝐵). Let 𝑤 ∈ M(K ⊗ 𝐵) be partial isometries such that 𝑤∗𝑤 ≥ 𝜙±(1).
Then [𝑤𝜙+𝑤∗,𝑤𝜙−𝑤∗] = [𝜙+, 𝜙−] in KK

h
(𝐴, 𝐵).

Proof. Set

𝑆𝑡 :=

(
cos

𝜋
2
𝑡 −𝑤∗ sin

𝜋
2
𝑡

𝑤 sin
𝜋
2
𝑡 𝑤𝑤

∗
cos

𝜋
2
𝑡

)
.

Then the map

𝑆
∗
𝑡

(
𝜙+(·)

𝑤𝜙− (·)𝑤∗
)
𝑆𝑡

is a
∗
-homomorphism. The homotopy between the two KK

h
-cycles is therefore given by (𝜆𝑡+, 𝜆𝑡−) where

𝜆+ := 𝜃𝐵

(
𝜙−

𝑤𝜙+𝑤
∗

)
, 𝜆− := 𝜃𝐵

(
𝑆
∗
𝑡

(
𝜃+

𝑤𝜙−𝑤
∗

)
𝑆𝑡

)
. □

Proposition 5.25. The pushout 𝑓∗ : KK
h
(𝐴, 𝐵) → KK

h
(𝐴,𝐶) is a homomorphism.

Proof. Let (𝜙+, 𝜙−) and (𝜓+,𝜓−) ∈ F(𝐴, 𝐵). Let 𝑣
1
, 𝑣

2
∈ M(K ⊗ 𝐵) be isometries given in Proposition 5.8. Then

𝑓∗( [𝜙+, 𝜙−] + [𝜓+,𝜓−]) = 𝑓∗( [𝑣1
𝜙+𝑣
∗
1
+ 𝑣

2
𝜙+𝑣
∗
2
, 𝑣

1
𝜙−𝑣

∗
1
+ 𝑣

2
𝜙−𝑣

∗
2
])

= [Ad𝑓 (𝑣
1
) 𝑓 (𝜙+) + Ad𝑓 (𝑣

2
) 𝑓 (𝜓+), . . .]

Use 𝑣
∗
1
𝑣

2
= 0 (Proposition 5.8) and Lemma 5.23:

= [Ad𝑓 (𝑣
1
) 𝑓 (𝜙+),Ad𝑓 (𝑣

2
) 𝑓 (𝜙−)] + [. . .]

Use Lemma 5.24:

= 𝑓∗ [𝜙+, 𝜙−] + 𝑓∗ [𝜓+,𝜓−] . □

Corollary 5.26. • Functoriality. (𝑓 ◦ 𝑔)∗ = 𝑓∗ ◦ 𝑔∗ for composable quasi-unital ∗-homomorphisms 𝑓 and 𝑔.

• If 𝑓
0
∼

qu
𝑓
1
. Then 𝑓

0∗ = 𝑓
1∗.

Theorem 5.27. KK
h
(𝐴, ·) : C∗Alg→ Ab is a stable functor. That is, the corner embedding 𝐵 ↩→ 𝐵 ⊗ K induces

an isomorphism
KK

h
(𝐴, 𝐵) � KK

h
(𝐴, 𝐵 ⊗ K) .
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April 5, 2022

Properties and examples of KK-theory
Speaker: Yuezhao Li (Leiden University)

6.1 What is KK-theory?

We have seen the definitions of KK-groups formulated in Kasparov’s picture and Cuntz’s picture. It might be

meaningful to ask what is KK-theory and what it is supposed to do. Depending on the viewpoint there are

several answers:

• A theory of generalised pseudodifferential operators (Kasparov).

• Generalised homomorphisms between C
∗
-algebras (Cuntz).

• A bivariant theory/bifunctor of (a suitable full subcategory of) C
∗
-algebras which generalise both

K-theory and K-homology (Atiyah, Kasparov). That is, for a C
∗
-algebra 𝐴:

KK(C, 𝐴) � K
0
(𝐴), KK(𝐴,C) � K

0(𝐴),

where K
0(𝐴) is the K-homology of 𝐴.

• A category of (a suitable class of) C
∗
-algebras which has very nice structure (e.g. a triangulated structure)

(Higson, Meyer–Nest, Mesland).

These different viewpoints are, of course, related to each other. Each of them can be more powerful and useful

in a certain context. I will explain some of the relations between them by examining some examples; in a

future talk of mine I will explain some categorical aspect of KK-theory.

6.2 Examples of Kasparov modules

6.2.1 Kasparov modules from ∗-homomorphisms

As indicated by Cuntz’s picture, KK-theory can be viewed as generalised homomorphisms between C
∗
-algebras.

The usual
∗
-homomorphisms should also represent elements in KK-theory. This is true.

Example 6.1. Let 𝑓 : 𝐴 → 𝐵 be a (graded)
∗
-homomorphism. Then K𝐵 (𝐵) � 𝐵. So 𝑓 yields a Kasparov

module [𝑓 ] := (𝐵, 𝑓 , 0) ∈ KK(𝐴, 𝐵).
In particular: id𝐴 : 𝐴→ 𝐴 defines a class [id𝐴] in KK(𝐴,𝐴). This is a special element: KK(𝐴,𝐴) equipped

with the Kasparov product becomes a ring, and [id𝐴] is the unit element.

6.2.2 K-theory

Theorem 6.2. Let 𝐵 be a C
∗-algebra, viewed as a trivially graded C

∗-algebra. Then KK(C, 𝐵) � K
0
(𝐵).

Proof. Assume 𝐵 is unital. Let 𝑝 ∈ M𝑛 (𝐵) be a projection. Then 𝑝𝐵
𝑛
is a finitely-generated projective 𝐵-

module. The converse is also true: any finitely-generated projective 𝐵-module gives a projection in M𝑛 (𝐵) by
projecting 𝐵

𝑛
onto this projective module. We need a graded Hilbert 𝐵-module in the Kasparov module. So we

define

𝐸𝑝 := 𝑝𝐵
𝑛 ⊕ 𝑝𝐵𝑛

equipped with the even grading. Let 𝜋 : C→ B𝐵 (𝐸𝐵) be the unital inclusion. Then (𝐸𝑝 , 𝜋, 0) ∈ E(C, 𝐵) and
hence defines a class in KK(C, 𝐵). This correspondence yields a map

K
0
(𝐵) → KK(C, 𝐵), [𝑝] ↦→ [𝐸𝑝 , 𝜋, 0],

which is well-defined.
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For the converse direction, starting with (𝐸, 𝜙, 𝐹 ) ∈ E(C, 𝐵) we want to associate a K-theory class to

it. This K-theory class should give a Kasparov module of the form (𝐸𝑝 , 𝜋, 0) where 𝐸𝑝 is finitely-generated,

projective 𝐵-module and 𝜋 is the unital inclusion. We use several steps to build a homotopy between (𝐸, 𝜙, 𝐹 )
and such a Kasparov module.

• Without changing the homotopy class of (𝐸, 𝜙, 𝐹 ) we may assume that 𝜙 is unital. This is done as follows:

let 𝑞 := 𝜙 (1). Then 𝑞 is a projection in B𝐵 (𝐸) and 𝜙 maps to its range becauuse 𝜙 (𝑎) = 𝜙 (1)𝜙 (𝑎)𝜙 (1).
Then we may consider (𝑞𝐸, 𝜙, 𝑞𝐹𝑞), which belongs to the same homotopy class of (𝐸, 𝜙, 𝐹 ): notice that

(𝐸, 𝜙, 𝐹 ) ∼
oh
(𝑞𝐸 ⊕ (1 − 𝑞)𝐸, 𝜙 ⊕ 0, 𝑞𝐹𝑞 ⊕ (1 − 𝑞)𝐹 (1 − 𝑞))

= (𝑞𝐸, 𝜙, 𝑞𝐹𝑞) + ((1 − 𝑞)𝐸, 0, (1 − 𝑞)𝐹 (1 − 𝑞)).

But ((1 − 𝑞)𝐸, 0, (1 − 𝑞)𝐹 (1 − 𝑞)) is degenerate.
• Then we may assume 𝜙 : C → B𝐵 (𝐸) is unital, so it is the unital inclusion 𝜋 : C ↩→ B𝐵 (𝐸). To build

a Kasparov module of the form (𝐸′, 𝜋, 0), we need to let 𝐹 have closed image. This does not always

happen even though 𝐹 is a “generalised Fredholm operator” because operators on Hilbert C
∗
-modules

are usually quite weird. But we may find a compact perturbation𝐺 of 𝐹 satisfying this property. That is,

consider the image 𝐹 in the Calkin algebra B𝐵 (𝐸)/K𝐵 (𝐸). The conditions (F2) and (F3) for a Kasparov

module imply that

𝐹
2

= 1, 𝐹 = 𝐹
∗
,

that is, 𝐹 ∈ B𝐵 (𝐸)/K𝐵 (𝐸) is a self-adjoint unitary. It lifts to a self-adjoint partial isometry 𝐺 ∈ B𝐵 (𝐸)
(see [24, Lemma 17.1.2]). Then 𝐺 has closed image and 𝐺 − 𝐹 ∈ K𝐵 (𝐸). So (𝐸, 𝜋,𝐺) lies in the same

homotopy class with (𝐸, 𝜋, 𝐹 ).
• We obtain the Kasparov module (ker𝐺, 𝜋, 0). We claim that ker𝐺 is finitely-generated and projective:

– The image of 𝐺 in B/K is 𝐹 , hence 𝐺 is invertible modulo compact. Let its parametrix be 𝐺
′
,

then 𝐺
′
𝐺 − id ∈ K. Restricting to ker𝐺 we have id

ker𝐺 ∈ K, so ker𝐺 is finitely-generated.

– We have 𝐸 � ker𝐺 ⊕ im𝐺 . Since im𝐺 is closed, ker𝐺 is a direct summand in 𝐸 and hence

projective.

Finally, the Kasparov module (ker𝐺, 𝜋, 0) is homotopic to (𝐸, 𝜋,𝐺) via (𝐸, �̃�, 𝐹 ), where

𝐸 := {𝑓 ∈ I𝐸 | 𝑓 (1) ∈ ker 𝐹 }, �̃� := 𝜋 ⊗ id, 𝐹 := 𝐹 ⊗ id . □

6.2.3 K-homology

The idea of K-homology originates from Atiyah. Topological K-theory, established by Atiyah and Hirzebruch,

is a generalised cohomology theory of spaces. Imposing some duality isomorphisms, there is a dual theory (in

a suitable sense) of K-theory, called K-homology. Let 𝑋 be a locally compact topological space, we write K
0
(𝑋 )

for its K-homology

Atiyah observed that this dual theory can be described by elliptic operators: elements of K-homology

groups can be represented by the so-called generalised elliptic operators, called K-cycles. There is a “index

pairing” between generalised elliptic operators and vector bundles, mapping to integers. All these were made

clear by Kasparov: a K-cycle for K
0
(𝑋 ) is a Kasparov (C

0
(𝑋 ),C)-module, and K

0
(𝑋 ) � KK(C

0
(𝑋 ),C).

Example 6.3. Let 𝑋 be a smooth closed manifold. Let 𝐸 and 𝐸
′
be vector bundles over 𝑋 . Choosing a partition

of unity, we may define a Riemannian (or Hermitian) metric on𝑀 , and 𝐿
2(𝑋, 𝐸) and 𝐿2(𝑋, 𝐸′), the space of 𝐿2

-

sections of these two vector bundles. Then C(𝑋 ) acts on 𝐿
2(𝑋, 𝐸) ⊕ 𝐿2(𝑋, 𝐸′) by multiplication. Denote this

multiplication action by 𝜋 . Let 𝑃 : C
∞(𝐸) → C

∞(𝐸′) be elliptic. Then it has a parametrix𝑄 : C
∞(𝐸′) → C

∞(𝐸).
Both 𝑃 and 𝑄 extends to (essentially unitary, Fredholm) operators on the 𝐿

2

-spaces of sections, which are

bounded because they are of order 0. Then(
𝐿

2(𝑋, 𝐸) ⊕ 𝐿2(𝑋, 𝐸′), 𝜋,
(

𝑄

𝑃

))
defines an element in E(C(𝑋 ),C).
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6.3 Properties of KK-theory

6.3.1 Functoriality

We restrict to the full subcategory of separable C
∗
-algebras C∗Sep.

Proposition 6.4. KK is a bifunctor C∗Sepop × C∗Sep→ Ab.

Proving the proposition is easy: we just need to show that the functoriality of Kasparov modules (Section

4.2) descend to KK-theory. Then it suffices to check that the functorial operations preserve homotopy relations

and direct sums.

Let E = (𝐸, 𝜙, 𝐹 ) ∈ E(𝐴, 𝐵).

Pullback Let 𝑓 : 𝐴
′ → 𝐴 be a

∗
-homomorphism. Recall that the pullback of E along 𝑓 is

𝑓
∗E := (𝐸, 𝜙 ◦ 𝑓 , 𝐹 ) ∈ E(𝐴′, 𝐵) .

The direct sums are preserved: 𝑓
∗(E+E′) = 𝑓

∗E+𝑓 ∗E′. If E
0
, E

1
∈ E(𝐴, 𝐵) are homotopic through E ∈ E(𝐴, I𝐵).

Then 𝑓
∗E ∈ E(𝐴′, I𝐵) is a homotopy connecting 𝑓

∗E
0
and 𝑓

∗E
1
. Therefore, 𝑓 defines a map KK(𝐴, 𝐵) →

KK(𝐴′, 𝐵).

Pushout Let 𝑔 : 𝐵 → 𝐵
′
be a

∗
-homomorphism. Recall that the pullback of E along 𝑔 is

𝑔∗E := (𝐸 ⊗𝑔 𝐵′, 𝜙 ⊗𝑔 id, 𝐹 ⊗𝑔 id) ∈ E(𝐴, 𝐵′) .

The direct sums are preserved:𝑔∗(E+E′) = 𝑔∗E+𝑔∗E′. If E0
, E

1
∈ E(𝐴, 𝐵) are homotopic through E ∈ E(𝐴, I𝐵).

Then there is a homotopy connecting 𝑔∗E0
and 𝑔∗E1

given by (I𝑔)∗E ∈ E(𝐴, I𝐵′). Here I𝑔 := 𝑔 ⊗ id : I𝐵 → I𝐵
′
.

We introduce another operation on KK-theory:

Suspension Let 𝐷 be a C
∗
-algebra. Define the Kasparov module

𝜏𝐷 (E) := (𝐸 ⊗ 𝐷,𝜙 ⊗ id, 𝐹 ⊗ id) ∈ E(𝐴 ⊗ 𝐷, 𝐵 ⊗ 𝐷).

Here 𝐸 ⊗ 𝐷 is the exterior tensor product of 𝐸 and 𝐷 (viewed as a Hilbert 𝐷-module).

“Slogan” I would like to remark the following slogan:

“All constructions are Kasparov products.”

Proposition 6.5. Let E ∈ E(𝐴, 𝐵).

• Let 𝑓 : 𝐴
′ → 𝐴 be a ∗-homomorphism. Then [𝑓 ∗E] = [𝑓 ] ⊗𝐴 [E].

• Let 𝑔 : 𝐵 → 𝐵
′ be a ∗-homomorphism. Then [𝑔∗E] = [E] ⊗𝐵 [𝑔].

The proposition can be checked by using the Connes–Skandalis conditions for connections (Definition 4.26).

6.3.2 Homotopy invariance

Theorem 6.6. • If 𝑓
0
, 𝑓

1
: 𝐴
′ ⇒ 𝐴 are homotopic ∗-homomorphisms. Then 𝑓

∗
0
= 𝑓
∗

1
: KK(𝐴, 𝐵) → KK(𝐴′, 𝐵)

for any C
∗-algebra 𝐵.

• If 𝑔
0
, 𝑔

1
: 𝐵 ⇒ 𝐵

′ are homotopic ∗-homomorphisms. Then 𝑔
0∗ = 𝑔

1∗ : KK(𝐴, 𝐵) → KK(𝐴, 𝐵′) for any
C
∗-algebra 𝐴.
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Proof. • If 𝑓
0
, 𝑓

1
: 𝐴
′ ⇒ 𝐴 are homotopic

∗
-homomorphisms. This means there is a

∗
-homomorphism

𝑓 : 𝐴
′ → I𝐴

such that ev𝑖 ◦𝑓 = 𝑓𝑖 for 𝑖 = 0, 1. Given any class in KK(𝐴, 𝐵), choose a representative E ∈ E(𝐴, 𝐵). The
image of E under the map

E(𝐴, 𝐵)
𝜏

C[0,1]−−−−→ E(I𝐴, I𝐵)
𝑓
∗

−−→ E(𝐴′, I𝐵)

defines a homotopy between 𝑓
∗

0
E and 𝑓

∗
1
E.

• If 𝑔
0
, 𝑔

1
: 𝐵 ⇒ 𝐵

′
are homotopic

∗
-homomorphisms. This means there is a

∗
-homomorphism 𝑔 : 𝐵 → I𝐵

′

such that ev𝑖 ◦𝑔 = 𝑔𝑖 for 𝑖 = 0, 1. Given any class in KK(𝐴, 𝐵), choose a representative E ∈ E(𝐴, 𝐵).
Then 𝑔∗E ∈ E(𝐴, I𝐵′) defines a homotopy between 𝑔

0∗E and 𝑔
1∗E. □

6.3.3 Stability

Theorem 6.7. The map 𝜏K : KK(𝐴, 𝐵) → KK(𝐴 ⊗ K, 𝐵 ⊗ K) is an isomorphism.

Proof. We construct an inverse of 𝜏K. Let E ∈ E(𝐴 ⊗ K, 𝐵 ⊗ K). Then

(E ⊗Ψ H𝐵, (𝜙 ◦ 𝑒) ⊗Ψ id, 𝐹 ⊗Ψ id) ∈ E(𝐴, 𝐵),

where Ψ : 𝐵 ⊗ K→ K𝐵 (H𝐵) is the isomorphism in (2) and 𝑒 : 𝐴 ↩→ 𝐴 ⊗ K is a corner embedding. This defines

an inverse map for 𝜏K. □

Corollary 6.8. KK is K-stable in both variables, i.e. the corner embeddings induce isomorphisms

KK(𝐴, 𝐵) � KK(𝐴 ⊗ K, 𝐵) � KK(𝐴, 𝐵 ⊗ K) .

Proof. Consider the following commutative diagram

KK(𝐴, 𝐵) KK(𝐴 ⊗ K, 𝐵)

KK(𝐴, 𝐵 ⊗ K) KK(𝐴 ⊗ K, 𝐵 ⊗ K) .

𝜏K
𝜏K

𝜏K

Here we use K ⊗ K � K. Notice that the 𝜏K’s in the diagram are all isomorphisms. Hence all arrows in the

diagram are isomorphisms. □

6.3.4 Bott periodicity

Definition 6.9. An element 𝑥 ∈ KK(𝐴, 𝐵) is called a KK-equivalence, if there exists 𝑦 ∈ KK(𝐵,𝐴) such that

𝑥 ⊗𝐵 𝑦 = [id𝐴] ∈ KK(𝐴,𝐴), 𝑦 ⊗𝐴 𝑥 = [id𝐵] ∈ KK(𝐵, 𝐵).

Two C
∗
-algebras 𝐴 and 𝐵 are KK-equivalent (denoted by 𝐴 ∼

KK
𝐵), if there exists a KK-equivalence 𝑥 ∈

KK(𝐴, 𝐵).

Remark 6.10. Note that the definition above is very similar to the definition of an isomorphism. This is true:

two C
∗
-algebras are KK-equivalent if they are isomorphic in the Kasparov category KK.

The proof of the following theorem is left to future talks:

Theorem 6.11. For any C
∗-algebra 𝐴, 𝐴 ∼

KK
S

2

𝐴. In particular: C ∼
KK

C
0
(R2).

Corollary 6.12. For any C
∗-algebra 𝐷 and 𝐴, KK(𝐷,𝐴) � KK(𝐷, S2

𝐴) and KK(𝐴, 𝐷) � KK(S2

𝐴, 𝐷).
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Proof. Consider

KK(𝐷,𝐴) KK(𝐷, S2

𝐴)
·⊗𝑥

·⊗𝑦

where 𝑥 ∈ KK(𝐴, S2

𝐴) and 𝑦 ∈ KK(S2

𝐴,𝐴) are KK-equivalences such that 𝑥 ⊗ 𝑦 = id𝐴 and 𝑦 ⊗ 𝑥 = id
S

2

𝐴
.

Let 𝑧 ∈ KK(𝐷,𝐴). Notice that under the map

KK(𝐷,𝐴) ·⊗𝑥−−−→ KK(𝐷, S2

𝐴)
·⊗𝑦
−−−→ KK(𝐷,𝐴),

The element 𝑧 is sent to 𝑧 ⊗ 𝑥 ⊗ 𝑦 = 𝑧 ⊗ (𝑥 ⊗ 𝑦) = 𝑧 ⊗ [id𝐴] = (id𝐴)∗𝑧 = 𝑧 (Proposition 6.5). A similar result

holds for the composition on the inverse direction. Therefore · ⊗ 𝑥 and · ⊗ 𝑦 are inverses to each other, hence

both group isomorphisms. □

6.3.5 Long exact sequence

Given an extension of C
∗
-algebra, one might hope to have a long exact sequence in KK-theory. Unfortunately,

this is not the case in general. But for semi-split extensions, we do have induced long exact sequences.

Recall that a linear map 𝑓 : 𝐴→ 𝐵 between C
∗
-algebras is

• completely positive if 𝑓 ⊗ id : 𝐴 ⊗ K→ 𝐵 ⊗ K is positive;

• contractive if ∥ 𝑓 ∥ ≤ 1.

Definition 6.13. An extension 𝐼 ↣ 𝐸 ↠ 𝑄 is called semi-split, if there exists a completely positive, contractive

section 𝑠 : 𝑄 → 𝐸.

If 𝐼 , 𝐸,𝑄 are graded, then 𝑠 is required to be graded as well.

Theorem 6.14. Let 𝐼 ↣ 𝐸 ↠ 𝑄 be a semi-split extension of 𝜎-unital C
∗-algebras. Then:

• For any separable 𝐴: there is an exact sequence

KK(𝐴, 𝐼 ) KK(𝐴, 𝐸) KK(𝐴,𝑄)

KK(𝐴, S𝑄) KK(𝐴, S𝐸) KK(𝐴, S𝐼 ).

• If 𝐸 is separable, then for any 𝜎-unital 𝐴: there is an exact sequence

KK(𝐼 , 𝐴) KK(𝐸,𝐴) KK(𝑄,𝐴)

KK(S𝑄,𝐴) KK(S𝐸,𝐴) KK(S𝐼 , 𝐴).

The proof in [3] used the Puppe sequence, which we prove first. Recall that the mapping cone C𝑓 :=

{(𝑎, 𝜑) ∈ 𝐴 ⊕ C𝐵 | 𝑓 (𝑎) = 𝜑 (1)}.
C𝑓 C𝐵

𝐴 𝐵

𝜋
C𝐵

𝜋𝐴
ev

1

𝑓

Theorem 6.15 (Puppe). There are long exact sequences

· · · → KK(𝐷, S𝐴)
(S𝑓 )∗−−−−→ KK(𝐷, S𝐵)

𝑖∗−→ KK(𝐷,C𝑓 )
𝜋𝐴∗−−−→ KK(𝐷,𝐴)

𝑓∗−→ KK(𝐷, 𝐵) → · · ·

and

· · · ← KK(S𝐴, 𝐷)
(S𝑓 )∗
←−−−− KK(S𝐵, 𝐷) 𝑖

∗

←− KK(C𝑓 , 𝐷)
𝜋
∗
𝐴←−− KK(𝐴, 𝐷)

𝑓
∗

←−− KK(𝐵, 𝐷) ← · · · ,
where 𝜋𝐴 : C𝑓 → 𝐴, 𝜋 (𝑎, 𝜑) := 𝑎 and 𝑖 : S𝐵 ↩→ C𝑓 , 𝑖 (𝜑) := (0, 𝜑).
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Proof. We only prove the first long exact sequence here. The second is similar but more involved.

• Exactness at KK(𝐷,𝐴). Let E
0
= (𝐸

0
, 𝜙

0
, 𝐹

0
) ∈ E(𝐷,𝐴) satisfy 𝑓∗ [E0

] = [0] ∈ KK(𝐷, 𝐵). Then 𝑓∗E0
is

homotopic to 0. Let the homotopy be given by
˜E = (𝐸, ˜𝜙, 𝐹 ) ∈ E(𝐷, I𝐵). Then (𝐸

0
⊕ 𝐸, 𝜙

0
⊕ ˜𝜙, 𝐹

0
⊕ 𝐹 ) ∈

E(𝐷,C𝑓 ), and 𝜋𝐴∗ ˜E = E
0
.

Conversely, let E = (𝐸, 𝜙, 𝐹 ) ∈ E(𝐷,C𝑓 ). We claim that 𝑓∗𝜋𝐴∗ [E] = [0]. By definition of the mapping

cone, we have 𝑓 ◦ 𝜋𝐴 = ev
1
◦𝜋

C𝐵 . By functoriality, 𝑓∗𝜋𝐴∗ [E] = ev
1∗(𝜋C𝐵∗ [E]). But ev

1
: I𝐵 → 𝐵 is

homotopic to ev
0
: I𝐵 → 𝐵 via the identity map I𝐵 → I𝐵, and ev

0
restricted to C𝐵 is the zero map. By

homotopy invariance, ev
1∗(𝜋C𝐵∗ [E]) = ev

0∗(𝜋C𝐵∗ [E]) = [0].

• Exactness at KK(𝐷,C𝑓 ). Consider the map C𝑓

𝜋𝐴−−→ 𝐴. Its mapping cone C𝜋𝐴
is

C𝜋𝐴
= {(𝑎, 𝜑, 𝜒) ∈ 𝐴 ⊕ C𝐵 ⊕ C𝐴 | 𝑓 (𝑎) = 𝜑 (1), 𝑎 = 𝜒 (1)}
= {(𝜑, 𝜒) ∈ C𝐵 ⊕ C𝐴 | 𝑓 (𝜒 (1)) = 𝜑 (1)}.

Consider the Puppe sequence for C𝑓

𝜋𝐴−−→ 𝐴. Then the sequence

· · · KK(𝐷,C𝜋𝐴
) KK(𝐷,C𝑓 ) KK(𝐷,𝐴) · · ·

𝜋
C𝑓 𝜋𝐴

is exact at KK(𝐷,C𝑓 ) by the first part of the proof. Let 𝜄 : S𝐵 ↩→ C𝜋𝐴
be the map

𝜄 (𝜑) := (𝜑, 0) .

This is a homotopy equivalence: the homotopy inverse is given by Φ : C𝜋𝐴
→ S𝐵,

Φ(𝜑, 𝜒) (𝑡) :=

{
𝜑 (2𝑡) 𝑡 ∈ [0, 1

2
]

𝑓 (𝜒 (2 − 2𝑡)) 𝑡 ∈ [ 1
2
, 1] .

Notice that 𝑖 = 𝜋
C𝑓 ◦ 𝜄. Therefore, the following diagram commutes:

· · · KK(𝐷,C𝜋𝐴
) KK(𝐷,C𝑓 ) KK(𝐷,𝐴) · · ·

KK(𝐷, S𝐵)

𝜋
C𝑓 𝜋𝐴

𝜄∗
𝑖∗

and by homotopy invariance of KK-theory, 𝜄∗ is an isomorphism. Therefore

· · · KK(𝐷, S𝐵) KK(𝐷,C𝑓 ) KK(𝐷,𝐴) · · ·𝑖∗ 𝜋𝐴

is exact at KK(𝐷,C𝑓 ).
• Exactness at KK(𝐷, S𝐵). The proof is essentially the same with the exactness at KK(𝐷,C𝑓 ): use the
Puppe sequence for S𝐵

𝑖
↩→ C𝑓 and the homotopy equivalence S𝐴 � C𝑖 . Then

· · · KK(𝐷,C𝑖) KK(𝐷, S𝐵) KK(𝐷,C𝑓 ) · · ·

KK(𝐷, S𝐴)

𝜋
S𝐵∗ 𝑖∗

�
S𝑓∗

is exact at KK(𝐷, S𝐵). This finishes the proof. □
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Idea of the proof of Theorem 6.14. • Let 𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄 be a semi-split extension. Write down the Puppe

sequence for 𝐸
𝑞
↠ 𝑄 . Together with the Bott periodicity we obtain the cyclic exact sequence

KK(𝐴,C𝑞) KK(𝐴, 𝐸) KK(𝐴,𝑄)

KK(𝐴, S𝑄) KK(𝐴, S𝐸) KK(𝐴, SC𝑞) .

• A Lemma:

Lemma 6.16. If 𝐼 ⊆ 𝐸 is a semi-split ideal. That is, 𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄 is semi-split. Then 𝐼 ↩→ C𝑞 is a

KK-equivalence.

• Identify C𝑞 with 𝐼 in the Puppe sequence. □

Corollary 6.17. KK is split-exact. That is, every split extension of C
∗-algebras induces a short exact sequence in

KK-theory.

Remark 6.18. • The above strategy has already been used in my previous talk to prove the long exact

sequence in K-theory.

• 𝐼 ⊆ 𝐸 is semi-split ideal iff the extension 𝐼 ↣ 𝐸 ↠ 𝑄 is an invertible extension. Then it gives an element

in Ext(𝑄, 𝐼 )−1 � KK
1
(𝑄, 𝐼 ). This will be clarified in future talks concerning the extension picture of KK

1
.

• Choi and Effros showed in [4] that if 𝐴 is nuclear, then every ideal of 𝐴 is semi-split. This is known as

the lifting theorem of nuclear C
∗
-algebras.

April 12 and April 19, 2022

The Kasparov product
Speaker: Bram Mesland (Leiden University)

In this section, we shall always omit the
∗
-homomorphism 𝜙 : 𝐴 → B𝐵 (𝐸) in a Kasparov module (𝐸, 𝜙, 𝐹 ).

While speaking about (𝑋, 𝐹 ) ∈ E(𝐴, 𝐵), we mean that 𝑋 is a Hilbert 𝐵-module which carries a left 𝐴-module

structure coming from a
∗
-homomorphism 𝜙 : 𝐴→ B𝐵 (𝐸).

We assume all C
∗
-algebras are separable. Recall that for “nice” properties to hold for KK(𝐴, 𝐵) we shall

require that 𝐴 is separable and 𝐵 is 𝜎-unital.

7.1 The Kasparov product in the bounded picture

A main property of KK-theory is that there exists an associative bilinear pairing

KK(𝐴, 𝐵) × KK(𝐵,𝐶) → KK(𝐴,𝐶)

for all separable C
∗
-algebras 𝐴, 𝐵 and 𝐶 . This is the Kasparov product (Definition 4.26). But there is a problem:

there is no explicit way to write down the Kasparov product of two Kasparov modules, even up to homotopy.

This can be solved using the unbounded picture of KK-theory. Before going into that, we shall first investigate

the situation in the bounded picture.

Recall the Connes–Skandalis conditions for connections (Definition 4.26):

Theorem7.1 ([5, Appendix A]). Let (𝑋, 𝐹
1
) ∈ E(𝐴, 𝐵) and (𝑌, 𝐹

2
) ∈ E(𝐵,𝐶). The Kasparov product (𝑋⊗𝐵𝑌, 𝐹 ) ∈

E(𝐴,𝐶) is, uniquely up to homotopy, characterised by the following properties:
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1. (Connection condition). For all 𝑥 ∈ 𝑋 : the operator

𝑦 ↦→ 𝐹 (𝑥 ⊗𝐵 𝑦) − 𝛾 (𝑥) ⊗𝐵 𝐹
2
𝑦 ∈ K(𝑌,𝑋 ⊗𝐵 𝑌 ),

where 𝛾 is the grading on 𝑋 .

2. (Positivity condition). There exists 0 < 𝜅 < 2, such that for all 𝑎 ∈ 𝐴:

𝑎
∗ [𝐹

1
⊗𝐵 1, 𝐹 ]𝑎 ≥ −𝜅𝑎∗𝑎 mod K(𝑋 ⊗𝐵 𝑌 ) .

We aim at constructing the operator 𝐹 . We would like to think of 𝐹 as the form 𝐹
1
⊗𝐵 1 + “1 ⊗𝐵 𝐹

2
” acting

on 𝑋 ⊗𝐵 𝑌 . The naïve idea 𝐹1
⊗𝐵 1 + 1 ⊗𝐵 𝐹

2
does not work: notice that

(1 ⊗𝐵 𝐹
2
) (𝑥𝑏 ⊗𝐵 𝑦) = 𝑥𝑏 ⊗𝐵 𝐹

2
𝑦 = 𝑥 ⊗𝐵 𝑏𝐹2

𝑦

but

(1 ⊗𝐵 𝐹
2
) (𝑥 ⊗𝐵 𝑏𝑦) = 𝑥 ⊗𝐵 𝐹

2
𝑏𝑦

which are not the same unless [𝐹
2
, 𝐵] = 0. This is the degenerate condition (D1).

In order to make sense of “1 ⊗𝐵 𝐹
2
”. We need to apply Kasparov’s stablisation theorem.

Let
ˆZ := Z \ 0 and

ˆH := ℓ
2( ˆZ) equipped with the grading deg 𝑒𝑖 := sgn(𝑖). This is a graded Hilbert space.

For simplicity, assume that 𝐵 is an ungraded C
∗
-algebra. Define

ˆH𝐵 := ˆH ⊗ 𝐵. Kasparov’s stablisation theorem

(Theorem 3.28) claims that if 𝑋 is a countably-generated graded Hilbert 𝐵-module. Then there exists a graded

isometry 𝑉 : 𝑋 → ˆH𝐵 . This defines a (tight, normalised) frame of 𝑋 :

𝑥𝑖 := 𝑉
∗(𝑒𝑖 ⊗ 1)

satisfying 𝑥 =
∑

𝑖 𝑥𝑖 ⟨𝑥𝑖 , 𝑥⟩ for all 𝑥 ∈ 𝑋 .

Notice that𝑉 ⊗𝐵 1 : 𝑋 ⊗𝐵 𝑌 → ˆH𝐵
+ ⊗𝐵 𝑌 = ˆH ⊗𝐵+ ⊗𝐵 𝑌 � ˆH ⊗𝑌 , and the operator 1⊗ 𝐹

2
is a well-defined

operator on the codomain of 𝑉 ⊗𝐵 1. This allows us to define the operator

𝐹
2

:= (𝑉 ∗ ⊗𝐵 1) (1 ⊗ 𝐹
2
) (𝑉 ⊗𝐵 1) : 𝑋 ⊗𝐵 𝑌 → 𝑋 ⊗𝐵 𝑌 .

𝐹
2
(𝑥 ⊗𝐵 𝑦) =

∑︁
𝑖

sgn(𝑖)𝑥𝑖 ⊗𝐵 𝐹
2
⟨𝑥𝑖 , 𝑥⟩𝑦.

Proposition 7.2. Define 𝐺 := 𝐹
1
⊗𝐵 1 + 𝐹

2
. Then 𝐺 satisfies the connection condition.

Proof. For simplicity, we only consider the case 𝑥 ∈ 𝑋 with deg(𝑥) = 0. Then

𝑥 =
∑︁
𝑖≥0

𝑥𝑖 ⟨𝑥𝑖 , 𝑥⟩.

Notice that we have

Lemma 7.3. Let 𝑋 be a Hilbert 𝐵-module. Let 𝑌 be a countably-generated Hilbert𝐶-module with a left 𝐵-module
structure. Fix 𝑥 ∈ 𝑋 . The operator

𝑇𝑥 : 𝑦 ↦→ 𝑥 ⊗𝐵 𝑦
is compact.

Proof of Lemma. Since 𝑌 is countably-generated. We may choose a countable frame {𝑦𝑖} of 𝑌 . Then 𝑦 =∑
𝑖 𝑦𝑖 ⟨𝑦𝑖 , 𝑦⟩ and

𝑥 ⊗𝐵 𝑦 = 𝑥 ⊗𝐵
∑︁
𝑖

𝑦𝑖 ⟨𝑦𝑖 , 𝑦⟩

=
∑︁
𝑖

𝑥 ⊗𝐵 𝑦𝑖 ⟨𝑦𝑖 , 𝑦⟩

=
∑︁
𝑖

Θ𝑥⊗𝐵𝑦𝑖 ,𝑦𝑖𝑦.

Hence 𝑇𝑥 is the norm limit of a sequence of finite-rank operators. □

37



We check the connection condition. We have

𝐺 (𝑥 ⊗𝐵 𝑦) − 𝑥 ⊗𝐵 𝐹
2
𝑦 = (𝐹

1
𝑥 ⊗ 𝑦) + (𝐹

2
(𝑥 ⊗𝐵 𝑦) − 𝑥 ⊗𝐵 𝐹

2
𝑦).

By Lemma 7.3, the operator 𝑦 ↦→ 𝐹
1
𝑥 ⊗𝐵 𝑦 is compact. And

𝐹
2
(𝑥 ⊗𝐵 𝑦) − 𝑥 ⊗𝐵 𝐹

2
𝑦 =

∑︁
𝑖≥0

𝑥𝑖 ⊗𝐵 𝐹
2
⟨𝑥𝑖 , 𝑥⟩𝑦 − 𝑥 ⊗𝐵 𝐹

2
𝑦

=
∑︁
𝑖≥0

𝑥𝑖 ⊗𝐵 𝐹
2
⟨𝑥𝑖 , 𝑥⟩𝑦 −

∑︁
𝑖

𝑥𝑖 ⟨𝑥𝑖 , 𝑥⟩ ⊗𝐵 𝐹
2
𝑦

=
∑︁
𝑖≥0

𝑥𝑖 ⊗𝐵 [𝐹2
, ⟨𝑥𝑖 , 𝑥⟩]𝑦.

For any finite partial sum, the operator

𝑦 ↦→
𝑁∑︁
𝑖=0

𝑥𝑖 ⊗𝐵 [𝐹2
, ⟨𝑥𝑖 , 𝑥⟩]𝑦

is compact by Lemma 7.3. It suffices to check that this operator converges in norm as 𝑁 →∞. Then it is the

norm limit of a sequence of compact operators, hence compact. To this end, notice that

sup

∥𝑦 ∥≤1

 𝑀∑︁
𝑖=𝑁+1

𝑥𝑖 ⊗𝐵 [𝐹2
, ⟨𝑥𝑖 , 𝑥⟩𝑦]

 ≤ sup

∥𝑦 ∥≤1

∥𝑥 ∥


©«
[𝐹

2
, ⟨𝑥𝑁+1, 𝑥⟩]

[𝐹
2
, ⟨𝑥𝑁+2, 𝑥⟩]

...

[𝐹
2
, ⟨𝑥𝑀 , 𝑥⟩]

ª®®®®¬
 ∥𝑦∥

≤ sup

∥𝑦 ∥≤1

2∥𝑥 ∥∥𝐹
2
∥


©«
⟨𝑥𝑁+1, 𝑥⟩
⟨𝑥𝑁+2, 𝑥⟩

...

⟨𝑥𝑀 , 𝑥⟩

ª®®®®¬
 ∥𝑦∥ .

But since

∑
𝑖 𝑥𝑖 ⟨𝑥𝑖 , 𝑥⟩ converges to 𝑥 in norm, we have

©«
⟨𝑥𝑁+1, 𝑥⟩
⟨𝑥𝑁+2, 𝑥⟩

...

⟨𝑥𝑀 , 𝑥⟩

ª®®®®¬
→ 0

and hence the tail converges to 0 in norm. □

Question Now that we have constructed the operator 𝐺 = 𝐹
1
⊗𝐵 1 + 𝐹

2
which satisfies the connection

condition. We may ask:

1. Is (𝑋 ⊗𝐵 𝑌,𝐺) a Kasparov module?

2. Does 𝐺 satisfy the positivity condition?

Answer The answer to both questions is NO! Let us check the conditions:

1. 𝐺 = 𝐺
∗
is satisfied.

2. [𝐺, 𝑎] = [𝐹
1
, 𝑎] ⊗𝐵 1 + [𝐹

2
, 𝑎]. Although [𝐹

1
, 𝑎] is compact by (F1), [𝐹

1
, 𝑎] ⊗𝐵 1 is usually not compact.

And we know nothing about [𝐹
2
, 𝑎].

3. 𝐺
2 − 1 = 𝐹

2

1
⊗𝐵 1 + 𝐹 2

2
+ [𝐹

1
⊗𝐵 1, 𝐹

2
] − 1 and we know nothing about [𝐹

1
⊗𝐵 1, 𝐹

2
].

4. Positivity condition: [𝐹
1
⊗𝐵 1,𝐺] = [𝐹

1
⊗𝐵 1, 𝐹

1
⊗𝐵 1] + [𝐹

1
⊗𝐵 1, 𝐹

2
]. We have claimed that [𝐹

1
⊗𝐵 1, 𝐹

1
⊗𝐵 1]

is positive as desired, but for the second term [𝐹
1
⊗𝐵 1, 𝐹

2
] there is no guarantee.
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Kasparov provided a complicated solution to this problem.

Proposition 7.4. Suppose there are even operators𝑀, 𝑁 ∈ B𝐵 (𝑋 ⊗𝐵 𝑌 ) with𝑀 + 𝑁 = 1, satisfying:

1. 𝑀 (K(𝑋 ) ⊗𝐵 1) ⊆ K(𝑋 ⊗𝐵 𝑌 ).
2. 𝑁 (𝐹 2

2
− 1) ∈ K(𝑋 ⊗𝐵 𝑌 ), 𝑁 [𝐹2

, 𝑎] ∈ K(𝑋 ⊗𝐵 𝑌 ) and 𝑁 [𝐹1
⊗𝐵 1, 𝐹

2
] ∈ K(𝑋 ⊗𝐵 𝑌 ).

3. [𝐹
1
⊗𝐵 1, 𝑁 ] ∈ K(𝑋 ⊗𝐵 𝑌 ), [𝐹2

, 𝑁 ] ∈ K(𝑋 ⊗𝐵 𝑌 ) and [𝑁, 𝑎] ∈ K(𝑋 ⊗𝐵 𝑌 ).

Then𝑀
1/2 and 𝑁 1/2 satisfy 1–3 as well, and

(𝑋 ⊗𝐵 𝑌,𝑀1/2(𝐹
1
⊗𝐵 1) + 𝑁 1/2

𝐹
2
) ∈ E(𝐴,𝐶)

is the Kasparov product of (𝑋, 𝐹
1
) and (𝑌, 𝐹

2
)!

Theorem 7.5 (Kasparov’s technical theorem). Such𝑀 and 𝑁 always exist.

Remark 7.6. As a consequence, the Kasparov product exists and is unique up to homotopy. This is established

through the following process:

1. Use Kasparov’s stablisation theorem to find 𝐹
2
.

2. Use Kasparov’s technical theorem to make a cycle.

3. Use Connes–Skandalis’ theorem to prove the existence and uniqueness.

How do we understand the operators𝑀 and 𝑁 ? This can be made more clear in the unbounded picture.

We can do even better: instead of adding the operators𝑀 and 𝑁 , in the unbounded picture one can usually

sum them up directly. In general we may write

(𝑋, 𝑆) ⊗ (𝑌,𝑇 ) = (𝑋 ⊗𝐵 𝑌, 𝑆 ⊗ 1 + 1 ⊗∇ 𝑇 )

where ∇ is a connection.

7.2 The unbounded picture of KK-theory

Definition 7.7. Let𝑋 be a Hilbert𝐵-module. A densely-defined, closed, symmetric operator𝐷 : 𝑋 ⊇ Dom𝐷 →
𝑋 is self-adjoint and regular, if the operator

𝐷 ± 𝑖 : 𝑋 ⊇ Dom𝐷 → 𝑋

has dense range.

Remark 7.8. Recall that if 𝐷 is a self-adjoint operator on a Hilbert space, then it is automatically regular,

i.e. 𝐷 ± 𝑖 has dense range. But this does not hold for operators on Hilbert C
∗
-modules.

Then the operator (𝐷 ± 𝑖)−1

is contractive and densely defined, hence extends to a bounded adjointable

operator on 𝑋 . We also have Dom𝐷 = Ran(𝐷 ± 𝑖)−1

.

Definition 7.9. Let 𝐴 and 𝐵 be separable C
∗
-algebras. An unbounded Kasparov (𝐴, 𝐵)-module is a pair (𝑋, 𝐷)

with:

• 𝑋 is a Hilbert 𝐵-module, which also carries a left 𝐴-module structure.

• 𝐷 : 𝑋 ⊇ Dom𝐷 → 𝑋 is self-adjoint, regular operator, satisfying

– 𝑎(𝐷 ± 𝑖)−1 ∈ K𝐵 (𝑋 ).
– The subset (which is a

∗
-subalgebra of 𝐴)

Lip(𝐴) := {𝑎 ∈ 𝐴 | 𝑎(Dom𝐷) ⊆ Dom𝐷 and [𝐷, 𝑎] ∈ B𝐵 (𝑋 )}

is norm-dense in 𝐴.
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We denote the set of unbounded Kasparov (𝐴, 𝐵)-modules by Ψ(𝐴, 𝐵).

Example 7.10. 1. (𝐿2(S1), 𝑖 d

d𝑥
) ∈ Ψ(C(S1),C). In particular: notice that the dense subalgebra{

𝑓 ∈ C(S1)
���� 𝑓 : Dom 𝑖

d

d𝑥
→ Dom 𝑖

d

d𝑥
, [𝐷, 𝑓 ] is bounded

}
is just the algebra of Lipschitz functions Lip(S1) on S1

.

2. Let𝑀 be a closed smooth manifold. Then (𝐿2(𝑀,Λ∗T∗𝑀), d+ d
∗) ∈ Ψ(C(𝑀),C).

3. (𝐿2(R), 𝑖 d

d𝑥
) ∈ Ψ(C

0
(R),C).

4. (C
0
(R), 𝑥) ∈ Ψ(C,C

0
(R)). Note that (𝑥 + 𝑖)−1 ∈ C

0
(R).

Lemma 7.11. If 𝐷 is self-adjoint and regular. Then (1 + 𝐷2)−1/2 ∈ B𝐵 (𝑋 ) and Dom𝐷 = Ran(1 + 𝐷2)−1/2.

Corollary 7.12. By the closed graph theorem: 𝐷 (1 + 𝐷2)−1/2 is everywhere defined and has closed range.
Hence 𝐷 (1 + 𝐷2)−1/2 ∈ B𝐵 (𝑋 ).

We call 𝐹𝐷 := 𝐷 (1 + 𝐷2)−1/2 the bounded transform of 𝐷 .

Theorem 7.13 ([2]). Let (𝑋, 𝐷) ∈ Ψ(𝐴, 𝐵). Then:

1. (𝑋, 𝐹𝐷 ) ∈ E(𝐴, 𝐵).
2. The map

Ψ(𝐴, 𝐵) → KK(𝐴, 𝐵), (𝑋, 𝐷) ↦→ [𝑋, 𝐹𝐷 ]

is surjective.

Remark 7.14. The second part of the theorem does not state that every bounded Kasparov module in E(𝐴, 𝐵)
lifts to an unbounded module in Ψ(𝐴, 𝐵): this is not true. The lift is only possible up to homotopy.

Proof. We only sketch the proof of 1. For simplicity, assume that 𝐴 is unital. We need to check that 𝐹𝐷 =

𝐷 (1 + 𝐷2)−1/2

satisfies (F1)–(F3). 𝐹
∗
𝐷 = 𝐹𝐷 because 𝐷 = 𝐷

∗
. For 𝐹

2

𝐷 − 1, we have

𝐹
2

𝐷 − 1 = 𝐷 (1 + 𝐷2)−1/2

𝐷 (1 + 𝐷2)−1/2 − 1 = 𝐷
2(1 + 𝐷2)−1 − 1

= −(1 + 𝐷2)−1

= −((𝐷 + 𝑖) (𝐷 − 𝑖))−1

= −(𝐷 − 𝑖)−1(𝐷 + 𝑖)−1 ∈ K𝐵 (𝑋 ).

(To convince you all these are legal: it is straightforward that (1 + 𝐷2)−1/2

𝐷 ⊆ 𝐷 (1 + 𝐷2)−1/2

. Now check the

domain. Recall that (1 + 𝐷2)−1/2

maps to Dom(𝐷2) ⊆ Dom(𝐷). Restricted to this domain (1 + 𝐷2)−1/2

𝐷 =

𝐷 (1+𝐷2)−1/2

. So the second equality holds. In the second line: we have that 𝐷
2 + 1, 𝐷 ± 𝑖 are surjective onto 𝑋

with bounded inverses. In particular: 𝐷
2 + 1 = (𝐷 + 𝑖) (𝐷 − 𝑖) on Dom(𝐷2). Then their inverse must be equal.)

The most non-trivial part is to show that [𝐹𝐷 , 𝑎] is compact. We have

[𝐹𝐷 , 𝑎] = [𝐷 (1 + 𝐷2)−1/2

, 𝑎] = [𝐷, 𝑎] (1 + 𝐷2)−1/2 + 𝐷 [(1 + 𝐷2)−1/2

, 𝑎] .

The first term

[𝐷, 𝑎] (1 + 𝐷2)−1/2

= [𝐷, 𝑎] (𝐷 − 𝑖)−1/2(𝐷 + 𝑖)−1/2

is compact, because [𝐷, 𝑎] is bounded, and 𝐷 ± 𝑖 are compact.

For the second term: we need to use

𝑇
−1/2

=
1

𝜋

∫ ∞

0

𝜆
−1/2(𝑇 + 𝜆2)−1

d𝜆. (3)

and

[𝑎−1

, 𝑏] = −𝑎−1 [𝑎, 𝑏]𝑎−1

. (4)
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Now

𝐷 [(1 + 𝐷2)−1/2

, 𝑎] (3)= 𝐷

𝜋

∫ ∞

0

𝜆
−1/2 [(1 + 𝜆2 + 𝐷2)−1

, 𝑎] d𝜆

(4)

= −𝐷
𝜋

∫ ∞

0

𝜆
−1/2(1 + 𝜆2 + 𝐷2)−1 [1 + 𝜆2 + 𝐷2

, 𝑎] (1 + 𝜆2 + 𝐷2)−1

d𝜆

= − 1

𝜋

∫ ∞

0

𝜆
−1/2

𝐷 (1 + 𝜆2 + 𝐷2)−1 [𝐷2

, 𝑎] (1 + 𝜆2 + 𝐷2)−1

d𝜆

= − 1

𝜋

∫ ∞

0

𝜆
−1/2

𝐷 (1 + 𝜆2 + 𝐷2)−1

𝐷 [𝐷, 𝑎] (1 + 𝜆2 + 𝐷2)−1

d𝜆

− 1

𝜋

∫ ∞

0

𝜆
−1/2

𝐷 (1 + 𝜆2 + 𝐷2)−1 [𝐷, 𝑎]𝐷 (1 + 𝜆2 + 𝐷2)−1

d𝜆.

Use the fact that [𝐷, 𝑎] is bounded and 𝐷 (1 + 𝜆2 + 𝐷2)−1

𝐷 is contractive (by functional calculus):

∥𝐷 [(1 + 𝐷2)−1/2

, 𝑎] ∥ ≤ 2

𝜋
∥ [𝐷, 𝑎] ∥

∫ ∞

0

𝜆
−1/2(1 + 𝜆2 + 𝐷2)−1

d𝜆

≤ 2

𝜋
∥ [𝐷, 𝑎] ∥

∫ ∞

0

𝜆
−1/2(1 + 𝜆2)−1

d𝜆

The integral ∫ ∞

0

𝜆
−1/2(1 + 𝜆2)−1

d𝜆

converges absolutely. (Notice that 𝜆
−1/2(1 + 𝜆2)−1 ∼ 𝜆

−1/2

as 𝜆 → 0, and 𝜆
−1/2(1 + 𝜆2)−1 ∼ 𝜆

−3/2

as 𝜆 →∞).
Therefore ∥𝐷 [(1 + 𝐷2)−1/2

, 𝑎] ∥ is bounded and we conclude that [𝐹𝐷 , 𝑎] is bounded. □

A big advantage of the unbounded picture is that one can simply sum up the unbounded operators to

obtain the Kasparov product in ideal situations.

7.3 The Kasparov product in the unbounded picture

We have the following Connes–Skandalis type theorem of Kucerovsky.

Theorem 7.15 ([16]). Let (𝑋, 𝑆) ∈ Ψ(𝐴, 𝐵) and (𝑌,𝑇 ) ∈ Ψ(𝐵,𝐶). If (𝑋 ⊗𝐵𝑌, 𝐷) ∈ Ψ(𝐴,𝐶) satisfies the following
conditions:

1. (Connection condition) For all 𝑥 in a dense subspace of 𝑋 : the operator

𝑦 ↦→ 𝐷 (𝑥 ⊗ 𝑦) − 𝛾 (𝑥) ⊗ 𝑇𝑦

extends to a bounded (hence adjointable) operator in B𝐶 (𝑌,𝑋 ⊗𝐵 𝑌 ).
2. (Domain condition) Dom𝐷 ⊆ Dom(𝑆 ⊗𝐵 1).
3. (Positivity and boundedness condition) There exists a real number 𝜅 such that for all 𝜉 ∈ Dom𝐷 :

⟨𝐷𝜉 + (𝑆 ⊗𝐵 1)𝜉⟩ + ⟨(𝑆 ⊗𝐵 1)𝜉, 𝐷𝜉⟩ ≥ 𝜅⟨𝜉, 𝜉⟩.

Then (𝑋 ⊗𝐵 𝑌, 𝐷) represents the Kasparov product of (𝑋, 𝑆) and (𝑌,𝑇 ).

Remark 7.16. 1. The domain condition indicates that we should think of 𝐷 as an operator

𝐷 = 𝑆 ⊗𝐵 1 +𝑇,

hence Dom𝐷 = Dom 𝑆 ⊗𝐵 1 ∩ Dom𝑇 ⊆ Dom 𝑆 ⊗𝐵 1.

2. The positivity and boundedness condition is, more or less, a rephrasal of the positivity condition in the

unbounded picture. But we need to care about the domain issue: we do not yet know whether 𝐷 and 𝑆

are composable, so the graded commutator may not make sense.
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7.3.1 The exterior Kasparov product

Before constructing the interior Kasparov product of unbounded modules, it is beneficial to look at the exterior
product. This is an associative bilinear map

KK(𝐴, 𝐵) × KK(𝐶, 𝐷) → KK(𝐴 ⊗ 𝐶, 𝐵 ⊗ 𝐷) .

In the bounded picture. Given (𝑋, 𝐹
1
) ∈ E(𝐴, 𝐵) and (𝑌, 𝐹

2
) ∈ E(𝐶, 𝐷). The exterior product is represented by

(𝑋 ⊗ 𝑌,𝑀1/2(𝐹
1
⊗ 1) + 𝑁 1/2(1 ⊗ 𝐹

2
)) ∈ E(𝐴 ⊗ 𝐶, 𝐵 ⊗ 𝐷),

where the operators𝑀 and 𝑁 appear again. But they no longer present if we work with unbounded modules.

Theorem 7.17 (Baaj–Julg). The exterior Kasparov product of (𝑋, 𝑆) ∈ Ψ(𝐴, 𝐵) and (𝑌,𝑇 ) ∈ Ψ(𝐶, 𝐷) is repre-
sented by

(𝑋 ⊗ 𝑌, 𝑆 ⊗ 1 + 1 ⊗ 𝑇 ) ∈ Ψ(𝐴 ⊗ 𝐶, 𝐵 ⊗ 𝐷) .

Remark 7.18. Notice that 𝑆 ⊗ 1 and 1 ⊗ 𝑇 anticommute. In fact:

((𝑆 ⊗ 1) (1 ⊗ 𝑇 ) + (1 ⊗ 𝑇 ) (𝑆 ⊗ 1)) (𝑥 ⊗ 𝑦) = (𝑆 ⊗ 1)𝛾 (𝑥) ⊗ 𝑇𝑦 + (1 ⊗ 𝑇 ) (𝑆𝑥 ⊗ 𝑦)
= 𝑆𝛾 (𝑥) ⊗ 𝑇𝑦 + 𝛾 (𝑆𝑥) ⊗ 𝑇𝑦
= 𝑆𝛾 (𝑥) ⊗ 𝑇𝑦 − 𝑆𝛾 (𝑥) ⊗ 𝑇𝑦 = 0.

Now we can answer the question: what are the operators𝑀 and 𝑁 in the bounded picture?

Proposition 7.19. Suppose 𝑠 and 𝑡 are self-adjoint and regular operators on a Hilbert 𝐵-module 𝑋 , such that:

• 𝐶 := Dom 𝑡𝑠 ∩ Dom 𝑠𝑡 is a common core for both 𝑠 and 𝑡 .

• 𝑠𝑡 + 𝑡𝑠 = 0 on 𝐶 .

Then (𝑠 + 𝑡)2 = 𝑠
2 + 𝑡2 on Dom 𝑠

2 ∩ Dom 𝑡
2.

Set 𝑠 := 𝑆 ⊗ 1 and 𝑡 := 1 ⊗ 𝑇 . Then they satisfy the conditions in the previous proposition. Consider the

bounded transform of the unbounded operator 𝑠 + 𝑡 . We have

(𝑠 + 𝑡) (1 + (𝑠 + 𝑡)2)−1/2

= 𝑠 (1 + 𝑠2 + 𝑡2)−1/2 + 𝑡 (1 + 𝑠2 + 𝑡2)−1/2

= 𝑠 ( 1
2

+ 𝑠2)−1/2 ( 1
2

+ 𝑠2)1/2(1 + 𝑠2 + 𝑡2)−1/2 −→ 𝑀

+ 𝑡 ( 1
2

+ 𝑡2)−1/2 ( 1
2

+ 𝑡2)1/2(1 + 𝑠2 + 𝑡2)−1/2 −→ 𝑁

The operator 𝑠 ( 1
2
+ 𝑠2)−1/2

is, up to a rescaling, the bounded transform of 𝑠: notice that

𝐷 (𝜆2 + 𝐷)−1/2

=
𝐷

𝜆

(
1 +

(
𝐷

𝜆

)
2

)−1/2

.

So a scaling provides a homotopy of unbounded modules. The scaling homotopy is not true in the bounded

picture.

7.3.2 Connections

Back to the interior Kasparov products. A similar problem occurs as in the bounded picture: we need to make

sense of “1 ⊗𝐵 𝑇 ” acting on 𝑋 ⊗𝐵 𝑌 . We need to define connections in the unbounded context.

For simplicity, let 𝐵 be ungraded.
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Definition 7.20. Let (𝑌,𝑇 ) ∈ Ψ(𝐵,𝐶). We choose a
∗
-subalgebra B ⊆ Lip(𝐵) which is dense in the norm of 𝐵:

this is part of the data. We unpack such data as a triple (B, 𝑌 ,𝑇 ).
The noncommutative differential 1-form for (B, 𝑌 ,𝑇 ) is

Ω1

𝑇 (B) := span{𝑏 [𝑇,𝑏′] | 𝑏,𝑏′ ∈ B} ⊆ B𝐶 (𝑌 ).
The closure is with respect to the norm topology of B𝐶 (𝑌 ).
Remark 7.21. Ω1

𝑇 (B) is a B,B-bimodule. The left module structure is obvious. The right module structure is

obtained by enforcing the Leibniz rule:

[𝑇,𝑏]𝑐 := [𝑇,𝑏𝑐] − 𝑏 [𝑇, 𝑐] .
Definition 7.22. Let 𝑋 be a Hilbert 𝐵-module. A Hermitian (B, 𝑌 ,𝑇 )-connection on 𝑋 is a densely defined

linear map

∇ : 𝑋 ⊇ X → 𝑋 ⊗h

B Ω1

𝑇 (B) ⊆ 𝑋 ⊗h

𝐵 B𝐶 (𝑌 ),
(X := Dom∇. ⊗h

denotes the Haagerup tensor product), such that

• ∇(𝑥𝑏) = ∇(𝑥)𝑏 + 𝛾 (𝑥) ⊗𝐵 [𝑇,𝑏] for 𝑏 ∈ B.
• ⟨𝑥

1
,∇𝑥

2
⟩ − ⟨∇𝑥

1
, 𝑥

2
⟩ = [𝑇, ⟨𝑥

1
, 𝑥

2
⟩].

Remark 7.23. Why Haagerup tensor product?

• The Haagerup tensor product is characterised by the property that the multiplication map

𝐵 ⊗h

𝐵 𝐵
mult−−−→ 𝐵

is continuous for any C
∗
-algebra 𝐵.

• More generally: the Haagerup tensor product is characterised by the following property: given any

C
∗
-algebra 𝐵 and Hilbert 𝐵-module 𝑋 , the multiplication map

𝑋 ⊗h

𝐵 𝐵
mult−−−→ 𝑋

is continuous.

• We can say even more. Given a Hilbert 𝐵-module 𝑋 and a Hilbert 𝐶-module 𝑌 which carries a left 𝐵-

module structure. Then there is a completely bounded isomorphism

𝑋 ⊗𝐵 𝑌 � 𝑋 ⊗h

𝐵 𝑌 .

Here we should view both sides as operator modules.

Remark 7.24. A connection always exists.

Definition 7.25. Given (B, 𝑌 ,𝑇 ) and a densely defined (B, 𝑌 ,𝑇 )-connection ∇ on 𝑋 . Define the operator

1 ⊗∇ 𝑇 : 𝑋 ⊗𝐵 𝑌 ⊇ X ⊗
alg

B Dom𝑇 → 𝑋 ⊗𝐵 𝑌
(1 ⊗∇ 𝑇 ) (𝑥 ⊗ 𝑦) := 𝛾 (𝑥) ⊗𝐵 𝑇𝑦 + ∇(𝑥)𝑦.

We have the satisfying result:

Proposition 7.26. 𝐷 := 𝑆 ⊗ 1 + 1 ⊗∇ 𝑇 is well-defined and satisfies Kucerovsky’s connection condition.

Proof. We have

1 ⊗∇ 𝑇 (𝑥𝑏 ⊗𝐵 𝑦) = 𝛾 (𝑥𝑏) ⊗𝐵 𝑇𝑦 + ∇(𝑥𝑏)𝑦
= 𝛾 (𝑥) ⊗𝐵 𝑏𝑇𝑦 + ∇(𝑥)𝑏𝑦 + 𝛾 (𝑥) ⊗𝐵 [𝑇,𝑏]𝑦
= 𝛾 (𝑥) ⊗𝐵 𝑇𝑏𝑦 + ∇(𝑥)𝑏𝑦
= 1 ⊗∇ 𝑇 (𝑥 ⊗𝐵 𝑏𝑦) .

So the operator 1 ⊗∇ 𝑇 is well-defined. Now

(𝑆 ⊗ 1 + 1 ⊗∇ 𝑇 ) (𝑥 ⊗𝐵 𝑦) − 𝛾 (𝑥) ⊗ 𝑇𝑦 = 𝑆𝑥 ⊗𝐵 𝑦 + ∇(𝑥)𝑦.
We have proven that 𝑦 ↦→ 𝑆𝑥 ⊗𝐵 𝑦 is compact, hence bounded. But 𝑦 ↦→ ∇(𝑥)𝑦 is obviously bounded

because ∇(𝑥) ∈ 𝑋 ⊗h

𝐵 B𝐶 (𝑌 ). □
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7.3.3 The interior Kasparov product

To finalise the construction of the Kasparov product, we need that operator 𝐷 := 𝑆 ⊗ 1 + 1 ⊗∇ 𝑇 satisfies:

(1) 𝐷 is self-adjoint and regular.

(2) 𝐷 has compact resolvent. i.e. 𝑎(𝐷 ± 𝑖)−1 ∈ K.

(3) [𝐷, 𝑎] ∈ B for 𝑎 ∈ Lip(𝐴), or a dense ∗-subalgebra A ⊆ 𝐴 contained in Lip(𝐴).

When are these condition satisfied?

(2) is automatically true by some long computation.

(1) is usually not guaranteed. But this is closely related to the graded commutator [𝑆 ⊗ 1, 1 ⊗∇ 𝑇 ] and hence
the Positivity and Boundedness condition. If it is relatively bounded by both 𝑆 ⊗ 1 and 1 ⊗∇ 𝑇 then this is

true.

(3) is quite independent and indicates that the connection should be compatible with 𝐴 in a suitable sense.

Eventually, we have

Theorem 7.27 (informally). Let (𝑋, 𝑆) ∈ Ψ(𝐴, 𝐵) and (𝑌,𝑇 ) ∈ Ψ(𝐵,𝐶). Pick a dense ∗-subalgebra B ⊆ 𝐵

satisfying the “Lipschitz” conditions. Let ∇ be a (B, 𝑌 ,𝑇 )-connection on 𝑋 . If:

• 𝑆 ⊗𝐵 1 and 1 ⊗∇ 𝑇 have “small anticommutator”.

• [1 ⊗∇ 𝑇, 𝑎] extends to a bounded adjointable operator for all 𝑎 ∈ Lip(𝐴).

Then (𝑋 ⊗𝐵 𝑌, 𝑆 ⊗𝐵 1 + 1 ⊗∇ 𝑇 ) represents the Kasparov product.

Example 7.28. Given (C∞
c
(R),C

0
(R), 𝑥) ∈ Ψ(C,C

0
(R)) and (C∞

c
, 𝐿

2(R), 𝑖 d

d𝑥
) ∈ Ψ(C

0
(R),C). Their Kasparov

product is represented by (
C
∞
c
(R), 𝐿2(R) ⊕ 𝐿2(R),

(
0 𝑥 + d

d𝑥

𝑥 − d

d𝑥
0

))
∈ Ψ(C,C) .

May 3 and May 10, 2022

Extension of C∗-algebras and KK-theory
Speaker: Georg Huppertz (Radboud University Nijmegen)

By an extension, or more concretely an extension of 𝐶 by 𝐴, we shall always mean a short exact sequence of

C
∗
-algebras 𝐴↣ 𝐵 ↠ 𝐶 .

Let 𝐴 be a C
∗
-algebra. We writeM(𝐴) for the multiplier algebra of 𝐴, and Q(𝐴) :=M(𝐴)/𝐴 is the corona

algebra. We have the following extension of C
∗
-algebras:

𝐴↣M(𝐴) ↠ Q(𝐴) .

8.1 Busby invariant

Recall the multiplier algebras can be realised as double centralisers:

Definition 8.1. Let𝐴 be a C
∗
-algebra. A double centraliser of𝐴 is a pair (𝐿, 𝑅) where 𝐿, 𝑅 ∈ B(𝐴) are bounded

linear maps, satisfying

𝐿(𝑎𝑏) = 𝐿(𝑎)𝑏, 𝑅(𝑎𝑏) = 𝑎𝑅(𝑏), 𝑅(𝑎)𝑏 = 𝑎𝐿(𝑏), for all 𝑎, 𝑏 ∈ 𝐴.

The C
∗
-algebraM(𝐴) consists of double centralisers of 𝐴 as elements, with multiplication, involution and

norm:

(𝐿
1
, 𝑅

1
) · (𝐿

2
, 𝑅

2
) := (𝐿

1
𝐿

2
, 𝑅

2
𝑅

1
), (𝐿, 𝑅)∗ := (𝑅∗, 𝐿∗), ∥(𝐿, 𝑅)∥ := ∥𝐿∥ = ∥𝑅∥ .
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Then 𝐴 ⊆ M(𝐴) via 𝑎 ↦→ (𝐿𝑎, 𝑅𝑎) where 𝐿𝑎 and 𝑅𝑎 denote left and right multiplication by 𝑎. If 𝐴 is unital,

then 𝐴 �M(𝐴).

Lemma 8.2 (Universal property of the multiplier algebra). Let 𝐼 ⊆ 𝐴 be an ideal. Then there exists a unique
∗-homomorphism 𝐴

𝜙
−→M(𝐼 ), such that the following diagram commutes:

𝐼 𝐴

M(𝐼 ) .

𝜙

Proof. Since 𝐼 is an ideal in 𝐴, the map 𝜙 (𝑎) = (𝐿𝑎, 𝑅𝑎) defines a multiplier of 𝐼 . It suffices to show the

uniqueness. If there is another𝜓 : 𝐴→M(𝐼 ) making the diagram commute, then

𝜓 (𝑎)𝑖 = 𝜓 (𝑎)𝜓 (𝑖) = 𝜓 (𝑎𝑖) = 𝑎𝑖

for all 𝑎 ∈ 𝐴, 𝑖 ∈ 𝐼 . Therefore𝜓 (𝑎) = 𝜙 (𝑎) for all 𝑎 ∈ 𝐴. □

Theorem 8.3. Let 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 be an extension. There exists a unique ∗-homomorphism 𝜎 : 𝐵 →M(𝐴) and a

unique ∗-homomorphism 𝜏 : 𝐶 → Q(𝐴) such that the diagram

𝐴 𝐵 𝐶

𝐴 M(𝐴) Q(𝐴)

𝛼 𝛽

𝜎 𝜏

𝜋

commutes. Here Q(𝐴) is the corona algebraM(𝐴)/𝐴.

Proof. The existence and uniqueness of 𝜎 : 𝐵 → M(𝐴) is by universal property. Since 𝛽 is surjective, for

any 𝑐 ∈ 𝐶 , pick 𝑏 ∈ 𝛽−1(𝑐). Define
𝜏 (𝑐) := 𝜋 ◦ 𝜎 (𝑏) .

It is easy to show that 𝜏 is a well-defined
∗
-homomorphism. (The surjectivity of 𝛽 predetermines 𝜏). □

Definition 8.4. The ∗-homomorphism 𝜏 : 𝐶 → Q(𝐴) defined as above is called the Busby invariant of the

extension 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 .

Theorem 8.5. Every ∗-homomorphism 𝐶
𝜏−→ Q(𝐴) is a Busby invariant of some extension.

Proof. Define 𝐵𝜏 as in the pullback diagram

𝐵𝜏 𝐶

M(𝐴) Q(𝐴) .

𝜏

𝜋

Then 𝐴↣ 𝐵𝜏 ↠ 𝐶 has Busby invariant 𝜏 . □

Definition 8.6. Let 𝐴
𝛼

1

↣ 𝐵
1

𝛽
1

↠ 𝐶 and 𝐴
𝛼

2

↣ 𝐵
2

𝛽
2

↠ 𝐶 be extensions. We say they are isomorphic, if there exists

a
∗
-homomorphism 𝐵

1

𝜙
−→ 𝐵

2
such that the following diagram commutes:

𝐴 𝐵
1

𝐶

𝐴 𝐵
2

𝐶.

𝛼
1

𝛽
1

𝜙

𝛼
2

𝛽
2

By Five Lemma, such 𝜙 must be an isomorphism of C
∗
-algebras.
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Theorem 8.7. There is a 1-1 correspondence between:

•
∗-homomorphisms 𝐶 → Q(𝐴).

• Isomorphism classes of extensions of 𝐶 by 𝐴.

Proof. We have seen that every
∗
-homomorphism 𝐶 → Q(𝐴) gives rise to an extension. We claim that this

correspondence is injective up to isomorphism. Let 𝐴↣ 𝐵 ↠ 𝐶 be an extension with Busby invariant 𝐶
𝜏−→

Q(𝐴). Then the
∗
-homomorphism 𝐵

(𝜎,𝛽 )
−−−−→ 𝐵𝜏 defines an isomorphism between the extensions 𝐴↣ 𝐵 ↠ 𝐶

and 𝐴↣ 𝐵𝜏 ↠ 𝐶 . □

Definition 8.8. • An extension 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 is split if there exists a

∗
-homomorphism 𝐶

𝛾
−→ 𝐵 such

that 𝛽 ◦ 𝛾 = id𝐶 .

• An extension 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 is orthogonal if it is isomorphic to the extension 𝐴↣ 𝐴 ⊕ 𝐶 ↠ 𝐶 .

Example 8.9. Let 𝐴 be a non-unital C
∗
-algebra. Then 𝐴↣ 𝐴

+ ↠ C splits, but is not orthogonal in general:

if 𝐴 ↣ 𝐵 ↠ 𝐶 is orthogonal, then the image of 𝐶 under the splitting is an ideal in 𝐵. But C is not an ideal

of 𝐴
+
in general.

Theorem 8.10. An extension 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 splits iff there exists a ∗-homomorphism 𝜂 : 𝐶 → M(𝐴) such

that 𝜏 = 𝜋 ◦ 𝜂, where 𝜋 : M(𝐴) → Q(𝐴).

Proof. Suppose𝐴↣ 𝐵 ↠ 𝐶 splits by𝛾 . Define𝜂 := 𝐶
𝛾
−→ 𝐵

𝜎−→M(𝐴). Then𝜂 satisfies 𝜋◦𝜂 = 𝜋◦𝜎◦𝛾 = 𝜏◦𝛽𝛾 =

𝜏 . Conversely, the
∗
-homomorphism 𝜂 : 𝐶 →M(𝐴) defines a split 𝐶

(𝜂,id)
−−−−→ 𝐵𝜏 for the extension 𝐴↣ 𝐵𝜏 ↠ 𝐶 .

This extension is isomorphic to 𝐴
𝛼
↣ 𝐵

𝛽
↠ 𝐶 , hence the latter splits too. □

Definition 8.11. Let 𝜏
1
, 𝜏

2
: 𝐶 ⇒ Q(𝐴) be two Busby invariants. We say they are unitarily equivalent, if there

exists a unitary multiplier 𝑢 ∈ M(𝐴) such that

𝜏
2
(𝑐) = 𝜋 (𝑢)𝜏

1
(𝑐)𝜋 (𝑢∗) for all 𝑐 ∈ 𝐶.

Remark 8.12. • The Busby invariant of an orthogonal extension is the zero map.

• Orthogonal extensions can only be unitarily equivalent to orthogonal extensions.

• Split extensions can only be unitarily equivalent to split extensions.

8.2 The Ext group

Definition 8.13. We use the following notations:

• 𝔈𝔵𝔱(𝐴, 𝐵): the set of isomorphism classes of extensions of 𝐴 by K ⊗ 𝐵.
• 𝔇𝔵𝔱(𝐴, 𝐵): the set of isomorphism classes of split extensions of 𝐴 by K ⊗ 𝐵.
• 𝔈𝔵𝔱(𝐴, 𝐵): the set of unitary equivalence classes of extensions of 𝐴 by K ⊗ 𝐵.
• 𝔇𝔵𝔱(𝐴, 𝐵): the set of unitary equivalence classes of split extensions of 𝐴 by K ⊗ 𝐵.

Recall that K𝐵 (H𝐵) � K ⊗ 𝐵 and B𝐵 (H𝐵) � M(K ⊗ 𝐵). Pick a specific isomorphism H𝐵

�−→ H𝐵 ⊕ H𝐵 .

This induces isomorphisms M
2
(B𝐵 (H𝐵))

�−→ B𝐵 (H𝐵) and M
2
(Q(K ⊗ 𝐵)) � Q(K ⊗ 𝐵). This allows us to define

additions on the sets defined above by passing to Busby invariants.

Definition 8.14. Let 𝜙
1
, 𝜙

2
: 𝐴 → Q(K ⊗ 𝐵) be Busby invariants, so they represent elements in 𝔈𝔵𝔱(𝐴, 𝐵).

Define 𝜙
1
⊕ 𝜙

2
: 𝐴→ Q(K ⊗ 𝐵) via

(𝜙
1
⊕ 𝜙

2
) (𝑎) :=

(
𝜙

1
(𝑎)

𝜙
2
(𝑎)

)
∈ M

2
Q(K ⊗ 𝐵) � Q(K ⊗ 𝐵) .

𝔈𝔵𝔱(𝐴, 𝐵) becomes a semigroup under the addition.
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Remark 8.15. • Since the sumof split extensions is again a split extension, the addition descends to𝔇𝔵𝔱(𝐴, 𝐵).
• If 𝜙

1
∼ 𝜙 ′

1
and 𝜙

2
∼ 𝜙 ′

2
are two pairs of unitarily equivalent Busby invariants in𝔈𝔵𝔱(𝐴, 𝐵), then 𝜙

1
⊕𝜙

2
∼

𝜙
′
1
⊕ 𝜙 ′

2
are unitarily equivalent. So the addition descends to 𝔈𝔵𝔱(𝐴, 𝐵) and𝔇𝔵𝔱(𝐴, 𝐵).

• On 𝔈𝔵𝔱(𝐴, 𝐵), the addition is abelian:(
𝜙

2
(𝑎)

𝜙
1
(𝑎)

)
=

(
0 1

1 0

) (
𝜙

1
(𝑎)

𝜙
2
(𝑎)

) (
0 1

1 0

)
.

• On 𝔈𝔵𝔱(𝐴, 𝐵), the addition does not depend on the choice of the isomorphismH𝐵

�−→ H𝐵 ⊕ H𝐵 .

Definition 8.16.
Ext(𝐴, 𝐵) := 𝔈𝔵𝔱(𝐴, 𝐵)/𝔇𝔵𝔱(𝐴, 𝐵) .

Proposition 8.17. Ext(𝐴, 𝐵) is a group.

Definition 8.18. Let 𝐴 and 𝐵 be separable C
∗
-algebras. By an (𝐴, 𝐵)-pair we shalll mean a pair (𝜙, 𝑃)

where 𝜙 : 𝐴→M(𝐵 ⊗ K) is a ∗-homomorphism, and 𝑃 ∈ M(𝐵 ⊗ K), such that:

𝜙 (𝑎)𝑃 − 𝑃𝜙 (𝑎) ∈ 𝐵 ⊗ K, (𝑃2 − 𝑃)𝜙 (𝑎) ∈ 𝐵 ⊗ K, (𝑃 − 𝑃∗)𝜙 (𝑎) ∈ 𝐵 ⊗ K, for all 𝑎 ∈ 𝐴.

We say an (𝐴, 𝐵)-pair (𝜙, 𝑃) is degenrate, if all above are equal to 0. Denote by E1(𝐴, 𝐵) the class of all (𝐴, 𝐵)-
pairs and D1(𝐴, 𝐵) the class of all degenerate (𝐴, 𝐵)-pairs.

Example 8.19. Some examples of an (𝐴, 𝐵)-pair (𝜙, 𝑃):

1. 𝜙 : 𝐴→M(𝐵 ⊗ K) is any ∗-homomorphism and 𝑃 ∈ 𝐵 ⊗ K.

2. 𝜙 : 𝐴→M(𝐵 ⊗ K) is any ∗-homomorphism and 𝑃 = id. Then (𝜙, 𝑃) is degenerate.
3. 𝜙 = 0 and 𝑃 ∈ M(𝐵 ⊗ K). Then (0, 𝑃) is degenerate.

We have operations on E1(𝐴, 𝐵):

Definition 8.20. • Let (𝜙
1
, 𝑃

1
) and (𝜙

2
, 𝑃

2
) be (𝐴, 𝐵)-pairs. Their sum is defined as

(𝜙
1
, 𝑃

1
) + (𝜙

2
, 𝑃

2
) := (𝜙

1
⊕ 𝜙

2
, 𝑃

1
⊕ 𝑃

2
)

with the identificationM(𝐵 ⊗ K) � M
2
(M(𝐵 ⊗ K)).

• Let (𝜙
1
, 𝑃

1
) and (𝜙

2
, 𝑃

2
) be (𝐴, 𝐵)-pairs. We say they are unitarily equivalent, if there exists a unitary

multiplier 𝑢 ∈ M(𝐵 ⊗ K) such that

𝜙
2
(𝑎) = 𝑢𝜙

1
(𝑎)𝑢∗, 𝑃

2
= 𝑢𝑃

1
𝑢
∗
, for all 𝑎 ∈ 𝐴.

Proposition 8.21. • Degenerate pairs can only be unitarily equivalent to degenerate pairs.

• Addition of pairs descends to their unitary equivalence classes.

Definition 8.22. We say two (𝐴, 𝐵)-pairs (𝜙
1
, 𝑃

1
) and (𝜙

2
, 𝑃

2
) are homological2, if

𝑃
1
𝜙

1
(𝑎) − 𝑃

2
𝜙

2
(𝑎) ∈ 𝐵 ⊗ K for all 𝑎 ∈ 𝐴.

Remark 8.23. Degenerate pairs can be homological to non-degenerate ones. For example, 1 and 3 in Example

8.19 are homological. But 3 is degenerate while 1 is not.

2

The term “homological” here was used by Kasparov. I am, however, not a big fan of this name, for some reasons. A reason is that

there are too many other properties that deserve this name; another is grammatically: it seems to me that “homological” should be a

property of one object, not a relation of a pair of objects.
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Definition 8.24. Define

E1(𝐴, 𝐵) := E1(𝐴, 𝐵)
/
unitary equivalence and homology.

D1(𝐴, 𝐵) := Classes in E1(𝐴, 𝐵) such that there is a degenerate representative.

E
1(𝐴, 𝐵) := E1(𝐴, 𝐵)

/
D1(𝐴, 𝐵).

Theorem 8.25. E
1(𝐴, 𝐵) is a semigroup. If 𝐴 is separable and nuclear, 𝐵 is 𝜎-unital, then

E
1(𝐴, 𝐵) → Ext(𝐴, 𝐵), [𝜙, 𝑃] ↦→ [𝑃𝜙]

is a semigroup isomorphism. Here [𝑃𝜙] is the Busby invariant defined by the map 𝑎 ↦→ 𝑃𝜙 (𝑎).

Proof. We first show that this map is well-defined. Since

𝑃𝜙 (𝑎𝑏) ≡ 𝑃
2

𝜙 (𝑎𝑏) ≡ 𝑃𝜙 (𝑎)𝑃𝜙 (𝑏) mod 𝐵 ⊗ K,

(𝑃𝜙 (𝑎))∗ ≡ 𝜙 (𝑎∗)𝑃∗ ≡ 𝑃𝜙 (𝑎∗) mod 𝐵 ⊗ K.

So 𝑃𝜙 defines a
∗
-homomorphism 𝐴→ Q(𝐵 ⊗ K). Hence it is the Busby invariant of some extension.

Clearly the addition and homology are preserved. Let𝑢 ∈ M(𝐵⊗K) be a unitary multiplier. Then𝑢𝑃𝜙 (𝑎)𝑢∗
is unitarily equivalent to 𝑃𝜙 (𝑎) modulo 𝐵 ⊗K. So the unitary equivalence is also preserved. Now we check that

degenerate pairs are sent to split extensions. This is because a degenerate pair defines a
∗
-homomorphism𝐴→

M(𝐵 ⊗ K). Hence it defines a split extension.
Therefore the map E

1(𝐴, 𝐵) → Ext(𝐴, 𝐵), [𝜙, 𝑃] ↦→ [𝑃𝜙] is indeed well-defined. We claim that it is injective.

If (𝜙
1
, 𝑃

1
) and (𝜙

2
, 𝑃

2
) defines the same element in Ext(𝐴, 𝐵), that is, there exists unitarymultiplier𝑢 ∈ M(𝐵⊗K)

and𝜓
1
,𝜓

2
∈ 𝔇𝔵𝔱(𝐴, 𝐵) such that

𝑃
1
𝜙

1
⊕𝜓

2
= 𝜋 (𝑢)𝑃

2
𝜙

2
𝜋 (𝑢∗) ⊕𝜓

2
.

Therefore,

(𝜙
1
, 𝑃

1
) ⊕ (𝜓

1
, 1) is homological to (𝜙

2
, 𝑃

2
) ⊕ (𝜓

2
, 1)

hence E
1(𝐴, 𝐵) → Ext(𝐴, 𝐵), [𝜙, 𝑃] ↦→ [𝑃𝜙] is injective.

Now we prove that it is surjective. We need the following lemmas:

Lemma 8.26 ([4, Corollary 3.11]). Let𝐴 and 𝐵 be unital C
∗-algebras, 𝐽 ⊆ 𝐵 be an ideal in 𝐵. If either𝐴, 𝐵 or 𝐵/𝐽

is nuclear, then any unital completely positive map 𝜙 : 𝐴→ 𝐵/𝐽 has a unital completely positive lift ˆ𝜙 : 𝐴→ 𝐵.

Lemma 8.27 (Stinespring’s dilation theorem). Let 𝐴 be a separable unital C
∗-algebra. Let 𝐵 be a 𝜎-unital C

∗-
algebra. Let 𝜙 : 𝐴→M(K⊗𝐵) be a unital completely positive map. Then there exists a ∗-homomorphism 𝜌 : 𝐴→
M

2
M(K ⊗ 𝐵) such that (

𝜙 0

0 0

)
=

(
1 0

0 0

)
𝜌 (𝑎)

(
1 0

0 0

)
.

Now let 𝜙 : 𝐴 → Q(K ⊗ 𝐵) be the Busby invariant of some extension. Since 𝐴 is separable and nuclear,

its unitisation �̃� is also separable nuclear and 𝜙 extends to a unital
∗
-homomorphism

˜𝜙 : �̃� → Q(K ⊗ 𝐵).
By Lemma 8.26, there is a unital completely positive lift

ˆ𝜙 : �̃� →M(K ⊗ 𝐵). By Lemma 8.27, there exists a

∗
-homomorphism 𝜌 : �̃�→ M

2
M(K ⊗ 𝐵) such that

𝜌 (𝑎) =
(
1 0

0 0

)
𝜌 (𝑎)

(
1 0

0 0

)
.

Then one shows that (𝜌 ◦ 𝑖,
(

1 0

0 0

)
) is an (�̃�, 𝐵)-pair, where 𝑖 : 𝐴 ↩→ �̃�. And the image of (𝜌 ◦ 𝑖,

(
1 0

0 0

)
) is 𝜙 . This

finishes the proof. □

48



8.3 The isomorphism between KK1 and Ext

Let Cℓ
1
be the first complex Clifford algebra. It is generated by a single self-adjoint unitary 𝜖 . There is a

standard grading on Cℓ
1
by enforcing 𝜖 to be odd.

Definition 8.28. Let 𝐴 and 𝐵 be (graded) C
∗
-algebras. Then

KK
1
(𝐴, 𝐵) := KK(𝐴, 𝐵 ⊗̂ Cℓ

1
) .

We have the following standard Hilbert C
∗
-modules:

• Let 𝐵 be a graded C
∗
-algebra. DefineH𝐵⊗̂Cℓ

1

:= H𝐵 ⊗̂ Cℓ
1
.

• Let 𝐵 be an ungraded C
∗
-algebra. Define

ˆH𝐵⊗Cℓ
1

:= H𝐵⊗Cℓ
1

⊕Hop

𝐵⊗Cℓ
1

equipped with the obvious grading.

• Let 𝐵 be a graded C
∗
-algebra. Define

ˆH𝐵⊗̂Cℓ
1

:= ˆH𝐵 ⊗̂ Cℓ
1
.

And one can show that

B( ˆH𝐵) � (M2
M(K ⊗ 𝐵), diagonal–off-diagonal grading) .

Lemma 8.29. There is a graded isomorphism

(M
2
M(K ⊗ 𝐵), diagonal–off-diagonal grading) ⊗̂ Cℓ

1
� (M

2
M(K ⊗ 𝐵), trivial grading) ⊗ Cℓ

1
.

As a corollary,
B( ˆH𝐵⊗̂Cℓ

1

) � (M
2
M(K ⊗ 𝐵), trivial grading) ⊗ Cℓ

1
.

If 𝐴 is separable and 𝐵 is 𝜎-unital. Then every class in KK(𝐴, 𝐵 ⊗̂ Cℓ
1
) can be written as

( ˆH𝐵⊗Cℓ
1

, 𝜙 ⊗̂ 1, 𝐹 ⊗̂ 𝜖),

for 𝜙 : 𝐴→ M
2
M(K ⊗ 𝐵) and 𝐹 ∈ M

2
M(K ⊗ 𝐵).

Lemma 8.30. There is a bijection between E(𝐴, 𝐵 ⊗̂ Cℓ
1
) and E1(𝐴, 𝐵) via

(H𝐵⊗̂Cℓ
1

, 𝜙 ⊗̂ 1, 𝐹 ⊗̂ 𝜖) ←→ (𝜙, 𝐹 + 1

2

) .

Proof. Straightforward. □

Theorem 8.31. The bijection in Lemma 8.30 induces an isomorphism of groups

KK
1
(𝐴, 𝐵) �−→ E

1(𝐴, 𝐵) .

Proof. Actually, we have

Degenerate cycles ←→ Degenerate pairs

Unitary equivalent cycles ←→ Unitary equivalent pairs

Operator homotopic cycles ←→ Homological pairs.

We write down the operator homotopy explicitly. Let (𝜙, 𝑃) and (𝜓,𝑄) be homological pairs. Then after

adding the degenerate cycles

( ˆH𝐵⊗̂Cℓ
1

, 𝜙 ⊗̂ 1,−1 ⊗̂ 𝜖) and ( ˆH𝐵⊗̂Cℓ
1

,𝜓 ⊗̂ 1,−1 ⊗̂ 𝜖),

we claim that the following two Kasparov modules:

( ˆH𝐵⊗̂Cℓ
1

, 𝜙 ⊗̂ 1,−1 ⊗̂ 𝜖) ⊕ ( ˆH𝐵⊗̂Cℓ
1

, 𝜙 ⊗̂ 1, (2𝑃 − 1) ⊗̂ 𝜖)
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and

( ˆH𝐵⊗̂Cℓ
1

,𝜓 ⊗̂ 1,−1 ⊗̂ 𝜖) ⊕ ( ˆH𝐵⊗̂Cℓ
1

,𝜓 ⊗̂ 1, (2𝑄 − 1) ⊗̂ 𝜖)

are operator homotopic. The operator homotopy is given by(
ˆH𝐵⊗̂Cℓ

1

,

(
𝜙 0

0 𝜓

)
,

1

1 + 𝑡2

(
2𝑃 − 1 2𝑡𝑃𝑄

2𝑡𝑄𝑃 2𝑡
2

𝑄

))
.

Then the bijection (H𝐵⊗̂Cℓ
1

, 𝜙 ⊗̂ 1, 𝐹 ⊗̂ 𝜖) ←→ (𝜙, 𝐹+1
2
) induces an (additive) isomorphism KK

1
(𝐴, 𝐵) �

E
1(𝐴, 𝐵). Since E

1(𝐴, 𝐵) � Ext(𝐴, 𝐵) as semigroups and KK
1
(𝐴, 𝐵) is a group, we conclude that Ext(𝐴, 𝐵) is a

group. □

May 10 and May 17, 2022

Categorical aspects of KK-theory
Speaker: Yuezhao Li (Leiden University)

Thanks to the Kasparov product, we may define the following Kasparov category KK:

Definition 9.1. The Kasparov category KK has the following data:

• Objects are separable C
∗
-algebras.

• An arrow 𝐴→ 𝐵 is an element in KK(𝐴, 𝐵). The composition of two arrows is given by the Kasparov

product.

It turns out that the Kasparov category KK has many better properties than the category of separable

C
∗
-algebras C∗Sep: KK is additive. Higson and Cuntz [12] noticed that this category can be characterised

by its universal property. Meyer and Nest [19–21] observed that KK is triangulated and illutrated that many

constructions and results (e.g. the Baum–Connes conjecture, the universal coefficient theorem) in KK-theory

can be formally translated to the categorical language.

9.1 KK-theory as a universal functor

This section mainly follows Higson’s article [12]. Our goal is to characterise KK-theory using universal

properties. This is due to Higson and Cuntz.

Theorem 9.2 (Higson). KK-theory is the universal split-exact, homotopy-invariant and K-stable functor.

Remark 9.3. It is also possible (and sometimes desirable) to omit “homotopy-invariant” due to a result of

Higson: K-stable together with split-exact implies homotopy-invariant.

What is a universal functor? The following definition is given in [18].

Definition 9.4. Let (P) be a property defined on a category C. (We will always assume that C is a full

subcategory of C∗Alg). A universal functor subject to (P) consists of the following data:

• A category Univ
P
(C).

• A functor𝑈
P

: C→ Univ
P
(C).

such that:

• For any functor 𝐹 : Univ
P
(C) → D, the functor 𝐹 := 𝐹 ◦𝑈

P
: C→ D satisfies (P).

• For any functor 𝐹 : C→ D satisfying (P), it factors as 𝐹 = 𝐹 ◦𝑈
P
for a unique functor 𝐹 : Univ

P
(C) → D.

Example 9.5. Here are some examples of universal functors on the category C = C∗Alg.
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C Univ
P
(C) C∗Sep KK

D Ab

𝑈
P

𝐹
𝐹

𝐹
𝐹

Figure 9.1: Universal functor C
𝑈

P−−→ Univ
P
(C), C∗Sep→ KK.

• Let (P)=“homotopy-invariant”. Then 𝑈
P

: C∗Alg → HoC∗Alg. An arrow from 𝐴 to 𝐵 in the cate-

gory HoC∗Alg is a homotopy class of
∗
-homomorphisms 𝐴→ 𝐵.

• Let (P)=“K-stable”. Then 𝑈
P

: C∗Alg → Corr. An arrow 𝐴 ⇝ 𝐵 in the category Corr are isomorphism
classes of C

∗
-correspondences from 𝐴 to 𝐵 ⊗ K. Recall that a C

∗
-correspondence from 𝐴 to 𝐵 ⊗ K is a

Hilbert 𝐵 ⊗ K-module 𝐸 together with a non-degenerated ∗-homomorphism 𝐴→ B𝐵⊗K(𝐸).
• Let (P)=“exact, homotopy-invariant and K-stable”. A functor C∗Alg → Ab is exact if it creates long

exact sequences from extensions (without the requirement of being semi-split). A universal functor

subject to (P) exists by some abstract and formal construction: notice that such a functor C∗Alg→ E is

also split-exact, so it factors uniquely through KK. Then one may realise this category by a quotient

(localisation) of KK. The universal category E is the E-theory category, introduced by Connes and Higson

[6].

There is a canonical functor C∗Sep→ KK. In a previous talk we have seen that KK-theory is split-exact,

homotopy-invariant and K-stable. What remains is to show that it is universal among all such functors.

Theorem 9.6. Let 𝐹 : C∗Sep→ Ab be a split-exact, homotopy-invariant and K-stable functor. Then there is a
well-defined group homomorphism

KK(𝐴, 𝐵) → Hom(𝐹 (𝐴), 𝐹 (𝐵))

for any separable C
∗-algebras 𝐴 and 𝐵. In particular: this construction is functorial in both 𝐴 and 𝐵.

Proof. It is convenient to work in Cuntz’s picture. Recall that in Cuntz’s picture, a KK
h
-cycle (quasiho-

momorphism) from 𝐴 to 𝐵 is a pair (𝜙+, 𝜙−) where 𝜙± : 𝐴 → M(K ⊗ 𝐵) are ∗-homomorphisms, and such

that 𝜙+(𝑎) − 𝜙− (𝑎) ∈ K ⊗ 𝐵 for all 𝑎 ∈ 𝐴. Denote the class of quasihomomorphisms from 𝐴 to 𝐵 by F(𝐴, 𝐵).
Given Φ := (𝜙+, 𝜙−) ∈ F(𝐴, 𝐵). You might want to define the induced map in Hom(𝐹 (𝐴), 𝐹 (𝐵)) to

be 𝐹 (𝜙+ −𝜙−) and use the fact that 𝐹 is K-stable. This does not work: 𝜙+ −𝜙− need not be a
∗
-homomorphism,

hence does not always induce a map between 𝐹 (𝐴) and 𝐹 (K ⊗ 𝐵), so 𝐹 (𝜙+) (𝑎) − 𝐹 (𝜙−) (𝑎) need not lie

in 𝐹 (K ⊗ 𝐵).
We will have to use split-exactness of 𝐹 . Define

𝐴Φ := {(𝑎, 𝑥) ∈ 𝐴 ⊕M(K ⊗ 𝐵) | 𝜙+(𝑎) − 𝑥 ∈ K ⊗ 𝐵}.

There is an obvious extension of C
∗
-algebras

K ⊗ 𝐵 𝐴Φ 𝐴,

ˆ𝜙−

ˆ𝜙+

which splits by
ˆ𝜙± := (id, 𝜙±). Another illuminating way is to consider the map 𝐴

𝜙+−−→M(K ⊗ 𝐵) ↠ Q(K ⊗ 𝐵)
as the Busby invariant of some split extension.

Since
ˆ𝜙± are

∗
-homomorphisms. They define maps 𝐹 ( ˆ𝜙±) : 𝐹 (𝐴) ⇒ 𝐹 (𝐴Φ). But 𝐹 is split-exact, meaning

that there is an isomorphism

𝐹 (𝐴Φ) � 𝐹 (𝐴) ⊕ 𝐹 (K ⊗ 𝐵) .
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Define 𝜋 to be the projection 𝐹 (𝐴Φ) → 𝐹 (K ⊗ 𝐵). Then the map Φ∗ : 𝐹 (𝐴) → 𝐹 (𝐵) induced by Φ = (𝜙+, 𝜙−) is
given by

𝐹 (𝐴)
𝐹 ( ˆ𝜙+ )−𝐹 ( ˆ𝜙− )−−−−−−−−−−−→ 𝐹 (𝐴Φ)

𝜋−→ 𝐹 (K ⊗ 𝐵) �−→ 𝐹 (𝐵) .
The last isomorphism is due to K-stability. Finally, by homotopy-invariance of 𝐹 one can show that the map is

well-defined on the level of KK
h
-groups. □

We define Φ∗ to be the map in Hom(𝐹 (𝐴), 𝐹 (𝐵)) induced by [Φ] ∈ KK(𝐴, 𝐵).

Corollary 9.7. There is a well-defined functor 𝐹 : KK→ Ab in Figure 9.1:

• Object level: 𝐹 (𝐴) := 𝐹 (𝐴).
• Arrow level: 𝐹 ( [Φ]) := Φ∗.

It remains to prove the uniqueness.

Proposition 9.8. Let 𝑥 ∈ 𝐹 (𝐴). Then there exists a unique natural transformation

𝛼 : KK(𝐴,−) ⇒ 𝐹

such that 𝛼𝐴 (1𝐴) = 𝑥 .

Proof. There is a unique natural transformation satisfying all the required properties:

KK(𝐴,𝐴) KK(𝐴, 𝐵) 1𝐴 [Φ]

𝐹 (𝐴) 𝐹 (𝐵) 𝑥 Φ∗(𝑥)

[Φ]

𝛼𝐴 𝛼𝐵

[Φ]

𝛼𝐴
𝛼𝐵

Φ∗ Φ∗

so 𝛼𝐵 ( [Φ]) := Φ∗(𝑥). □

Corollary 9.9. The Kasparov product is unique. That is, there is a unique bilinar map

KK(𝐴, 𝐵) ⊗ KK(𝐵,𝐶)
⊗𝐵−−→ KK(𝐴, 𝐵)

which is functorial in 𝐴, 𝐵 and 𝐶 and satisfies 1𝐵 ⊗𝐵 𝑥 = 𝑥 , 𝑦 ⊗𝐵 1𝐵 = 𝑦 for all suitable 𝑥 , 𝑦 and 𝐵.

Proof. Suppose there is another Kasparov product, denoted by ⊗′. Consider the natural transformations

𝛼 : KK(𝐶,−) ⇒ KK(𝐴,−), 𝑧 ↦→ (𝑥 ⊗′ 𝑦) ⊗ 𝑧,
𝛽 : KK(𝐶,−) ⇒ KK(𝐴,−), 𝑧 ↦→ 𝑥 ⊗′ (𝑦 ⊗ 𝑧)

for some given fixed 𝑥 ∈ KK(𝐴, 𝐵) and 𝑦 ∈ KK(𝐵,𝐶). For 1𝐶 ∈ KK(𝐶,𝐶):

(𝑥 ⊗′ 𝑦) ⊗ 1 = 𝑥 ⊗′ 𝑦 = 𝑥 ⊗′ (𝑦 ⊗ 1) .

So 𝛼𝐶 (1𝐶 ) = 𝛽𝐶 (1𝐶 ) = 𝑥 ⊗′ 𝑦. By previous lemma, this forces 𝛼 = 𝛽 . Therefore,

(𝑥 ⊗′ 𝑦) ⊗ 𝑧 = 𝑥 ⊗′ (𝑦 ⊗ 𝑧)

for all 𝑥 ∈ KK(𝐴, 𝐵), 𝑦 ∈ KK(𝐵,𝐶) and 𝑧 ∈ KK(𝐶, 𝐷). Then

𝑥 ⊗′ 𝑦 = (𝑥 ⊗ 1𝐵) ⊗′ (1𝐵 ⊗ 𝑦) = 𝑥 ⊗ (1𝐵 ⊗′ 1𝐵) ⊗ 𝑦 = 𝑥 ⊗ 1𝐵 ⊗ 𝑦 = 𝑥 ⊗ 𝑦. □

Proof of Theorem 9.2. Define 𝐹 as in Corollary 9.7. This is a functor. We claim it is unique. Notice that there is

a natural transformation

KK(𝐴,−) ⇒ Hom(𝐹 (𝐴), 𝐹 (−)),
which by functoriality, sends 1𝐴 to 1𝐹 (𝐴) . This uniquely charaterises the natural transformation, hence the

functor 𝐹 , by the previous lemma. □
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Remark 9.10. Since K-theory is also split-exact, homotopy-invariant and stable, we have well-defined maps

KK(𝐴, 𝐵) → Hom(K
0
(𝐴),K

0
(𝐵))

and

KK(𝐴, 𝐵) → Hom(K
1
(𝐴),K

1
(𝐵))

which are given by the Kasparov product. What do we know about these maps in general? Are they surjective

or an isomorphism? This shall be answered by the universal coefficient theorem.

9.2 KK-theory as a triangulated category

9.2.1 Universal coefficient theorem

The universal coefficient theorem (UCT) allows us to understand the map KK(𝐴, 𝐵) → Hom(K
0
(𝐴),K

0
(𝐵))

and KK(𝐴, 𝐵) → Hom(K
1
(𝐴),K

1
(𝐵)). Let K∗(𝐴) := K

0
(𝐴) ⊕ K

1
(𝐴) be the Z/2-graded abelian group with the

obvious grading.

Theorem 9.11. Let 𝐴 and 𝐵 be separable C
∗-algebras and 𝐴 lies in the bootstrap class (Definition 9.15). Then

there is a short exact sequence of abelian groups

0→ ExtZ(K∗(𝐴),K∗(𝐴)) → KK(𝐴, 𝐵) → Hom(K∗(𝐴),K∗(𝐵)) → 0.

which splits, but not naturally.

The functor ExtZ is the (first) right derived functor of Hom in the category of abelian groups (=Z-modules).

We recall the definition.

Definition 9.12. Let 𝑅 be a commutative ring.

• Let 𝐴 be an 𝑅-module. A projective resolution of 𝐴 is an exact chain complex of 𝑅-modules

· · · → 𝑃
2
→ 𝑃

1
→ 𝑃

0
→ 𝐴→ 0,

such that every 𝑃𝑖 is projective.

• Let 𝐴 and 𝐵 be 𝑅-modules. Take a projective resolution

· · · → 𝑃
2
→ 𝑃

1
→ 𝑃

0
→ 𝐴→ 0

of 𝐴. Then Ext
𝑛
𝑅 (𝐴, 𝐵) is defined as the cohomology of the following chain complex

· · · ← Hom𝑅 (𝑃2
, 𝐵) ← Hom𝑅 (𝑃1

, 𝐵) ← Hom𝑅 (𝑃0
, 𝐵) ← 0,

Hom𝑅 (𝑃𝑖 , 𝐵) is the abelian group of 𝑅-modules maps 𝑃𝑖 → 𝐵.

Remark 9.13. 1. Ext
𝑛
𝑅 (−, 𝐵) : Modop

𝑅
→ Ab is a functor. It is the 𝑛-th right derived functor of the func-

tor Hom𝑅 (−, 𝐵) : Modop

𝑅
→ Ab.

2. Ext
0

𝑅 (−, 𝐵) = Hom𝑅 (−, 𝐵).
3. Ext

𝑛
𝑅 (𝐴, 𝐵) does not depend on the choice of the projective resolution of 𝐴.

4. If 𝐴 is projective, then Ext
𝑛
𝑅 (𝐴, 𝐵) = 0 for 𝑛 ≥ 2. This is because 𝐴 has a length-one projective resolution

0→ 𝐴→ 𝐴→ 0.

Then by definition, Ext
𝑛
𝑅 (𝐴, 𝐵) = 0 for all 𝑛 ≥ 2. In this case we also write Ext𝑅 := Ext

1

𝑅 .
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Lemma 9.14. Let 0→ 𝐴→ 𝐵 → 𝐶 → 0 be a short exact sequence of 𝑅-modules. Let 𝐷 be another 𝑅-module.
Then there is a natural long exact sequence

· · · ← Ext
𝑛
𝑅 (𝐴, 𝐷) ← Ext

𝑛
𝑅 (𝐵, 𝐷) ← Ext

𝑛
𝑅 (𝐶, 𝐷) ← · · ·

← Ext
1

𝑅 (𝐶, 𝐷) ← Hom𝑅 (𝐴, 𝐷) ← Hom𝑅 (𝐵, 𝐷) ← Hom𝑅 (𝐶, 𝐷) ← 0.

Definition 9.15. The bootstrap class 𝑁 is the smallest class of nuclear, separable C
∗
-algebras, satisfying:

(N1) C ∈ 𝑁 .

(N2) 𝑁 is closed under countable direct limit.

(N3) 𝑁 is closed under extension.

(N4) 𝑁 is closed under KK-equivalence.

Remark 9.16. Many well-known C
∗
-algebras belong to 𝑁 :

C ∈ 𝑁
(N3)

===⇒ C
0
(R𝑛),C( [0, 1]𝑛) ∈ 𝑁

(N3)

===⇒ C(𝑋 ) ∈ 𝑁 , for any finite simplicial complex 𝑋

(N2)

===⇒ C(𝑋 ) ∈ 𝑁 , for any compact 𝑋 = unital commutative C
∗
-algebras

(N3)

===⇒ C
0
(𝑋 ) ∈ 𝑁 , for any locally compact 𝑋 = commutative C

∗
-algebras.

Where does the term ExtZ(K∗(𝐴),K∗(𝐵)) come from? The UCT for cohomology gives us some motivation.

Recall that

Theorem 9.17 (UCT in cohomology). Let (𝐶∗, 𝑑∗) be a chain complex of free abelian groups. Let 𝐺 be any
abelian group. Then there is a short exact sequence of abelian groups:

0→ ExtZ(H∗(𝐶∗),𝐺) → H
∗(𝐶∗,𝐺) → Hom(𝐻∗(𝐶∗),𝐺) → 0.

Sketch of the proof. Let

𝐵∗ := im𝑑∗+1 be the chain of boundaries with the zero differential.

𝑍∗ := ker𝑑∗ be the chain of cycles with the zero differential.

Then there are short exact sequences

0→ 𝑍∗ → 𝐶∗
𝑑∗−→ 𝐵∗−1

→ 0

0→ 𝐵∗
𝑖−→ 𝑍∗ → H∗(𝐶∗) → 0

Notice that since𝐶∗ is a chain complex of free abelian groups, then both 𝑍∗ and 𝐵∗ are chain complex of abelian

group. (But H∗(𝐶∗) may not be!) The first short exact sequence

0→ 𝑍∗ → 𝐶∗
𝑑∗−→ 𝐵∗−1

→ 0,

together with Lemma 9.14 and the fact that 𝐵∗−1
is free (=projective in the case of abelian groups) yields

0← Hom(𝑍∗,𝐺) ← Hom(𝐶∗,𝐺) ← Hom(𝐵∗−1
,𝐺) ← 0.

This new short exact sequence induces a long exact sequence in cohomology. Since the complexes Hom(𝑍∗,𝐺)
andHom(𝐵∗,𝐺) both have zero differential (!), we identifyH

∗(Hom(𝑍∗,𝐺)) (orH
∗(Hom(𝐵∗,𝐺))) withHom(𝑍∗,𝐺)

(or Hom(𝐵∗,𝐺)) itself. The long exact sequence reads

· · · ← Hom(𝐵∗,𝐺)
𝑖
∗

←− Hom(𝑍∗,𝐺) ← H
∗(𝐶∗,𝐺) ← Hom(𝐵∗−1

,𝐺) 𝑖
∗

←− Hom(𝑍∗−1
,𝐺) ← · · ·
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and is cut down to the following short exact sequence

0→ coker 𝑖
∗ → H

∗(𝐶∗,𝐺) → ker 𝑖
∗ → 0.

It suffices to identify coker 𝑖
∗
and ker 𝑖

∗
with the corresponding terms in UCT. Consider the second short exact

sequence

0→ 𝐵∗
𝑖−→ 𝑍∗ → H∗(𝐶∗) → 0

which by Lemma 9.14 gives a long exact sequence

0← ExtZ(H∗(𝐶∗),𝐺) ← Hom(𝐵∗,𝐺)
𝑖
∗

←− Hom(𝑍∗,𝐺) ← Hom(H∗(𝐶∗),𝐺) ← 0.

So ExtZ(H∗(𝐶∗),𝐺) � coker 𝑖
∗
and Hom(H∗(𝐶∗),𝐺) � ker 𝑖

∗
. □

Remark 9.18. The Ext
1

appears precisely because H
𝑛 (𝐶∗,𝐺) is an abelian group for every 𝑛, and any abelian

group has a projective resolution of length one, so that we may identify Ext with a suitable cokernel. This

motivates us to study the projective resolution of K∗(𝐴). Unlike UCT in cohomology, in which we do not leave

the category Ab (or more precisely: the category Kom(Ab) of chain complexes in Ab). For UCT in KK, we need

to work with the Kasparov category KK, which is only additive but not abelian; and we need to find a suitable

way to lift a projective resolution of K∗(𝐴) to a “resolution” of 𝐴. All these can be made precise by studying

the triangulated structure of KK.

9.2.2 Triangulated categories

Definition 9.19. • Let T be a (locally small) category. It is additive, if the followings hold:

1. T has zero object.

2. T has finite biproduct (i.e. finite products coincide with finite coproducts)

3. T(𝐴, 𝐵) is an abelian group for all 𝐴, 𝐵. (T(𝐴, 𝐵) is the set of arrows from 𝐴 to 𝐵.)

4. The composition of arrows is a group homomorphism.

• Let T be an additive category. A suspension functor is an additive automorphism Σ : T→ T. (Additive
means Σ(𝑓 + 𝑔) = Σ(𝑓 ) + Σ(𝑔)). A stable additive category is an additive category T together with a

suspension functor Σ : T→ T.

• A triangle in a stable additive category (T, Σ) is a diagram

Σ𝐶 → 𝐴→ 𝐵 → 𝐶

in this category. A morphism between triangles Σ𝐶
𝑓
−→ 𝐴

𝑔
−→ 𝐵

ℎ−→ 𝐶 and Σ𝐶′
𝑓
′

−→ 𝐴
′ 𝑔

′

−→ 𝐵
′ ℎ

′

−→ 𝐶
′
is a

diagram

Σ𝐶 𝐴 𝐵 𝐶

Σ𝐶′ 𝐴
′

𝐵
′

𝐶
′
.

𝑓

Σ𝛾

𝑔

𝛼

ℎ

𝛽 𝛾

𝑓
′

𝑔
′

ℎ
′

Two triangles are isomorphic if there exists a pair of invertible morphisms between them.

Definition 9.20. A triangulated structure3 on an additive category T consists of a suspension functor Σ : T→ T,
together with a collection of triangles called exact triangles, satisfying the following axioms:

3

Actually, what I am writing down is a cotriangulated structure, which is the structure on the opposite category of a triangulated

category. As mentioned in [21], the triangulated structure actually lies in KK
op

. But this makes quite little difference: the opposite

category of a triangulated category is also triangulated. This makes only some notational trouble.
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(TR0) Any triangle isomorphic to an exact triangle is exact. The triangle

Σ𝐴→ 0→ 𝐴
id−→ 𝐴

is exact.

(TR1) Given any arrow 𝑓 : 𝐵 → 𝐶 , there exists an exact triangle

Σ𝐶 → 𝐴→ 𝐵
𝑓
−→ 𝐶.

(TR2) “Rotation axiom”. Σ𝐶 → 𝐴→ 𝐵 → 𝐶 is exact iff Σ𝐵 → Σ𝐶 → 𝐴→ 𝐵 is exact.

(TR3) Given two exact triangles Σ𝐶
𝑓
−→ 𝐴

𝑔
−→ 𝐵

ℎ−→ 𝐶 and Σ𝐶′
𝑓
′

−→ 𝐴
′ 𝑔

′

−→ 𝐵
′ ℎ

′

−→ 𝐶
′
. If there exist an

arrows 𝛽 : 𝐵 → 𝐵
′
and 𝛾 : 𝐶 → 𝐶

′
such that the diagram

Σ𝐶 𝐴 𝐵 𝐶

Σ𝐶′ 𝐴
′

𝐵
′

𝐶
′

𝑓

Σ𝛾

𝑔 ℎ

𝛽 𝛾

𝑓
′

𝑔
′

ℎ
′

commutes. Then there exists (maybe not uniquely!) an arrow 𝛼 : 𝐴→ 𝐴
′
such that the diagram becomes

a morphism of triangles, that is, the following diagram commutes:

Σ𝐶 𝐴 𝐵 𝐶

Σ𝐶′ 𝐴
′

𝐵
′

𝐶
′
.

𝑓

Σ𝛾

𝑔

𝛼

ℎ

𝛽 𝛾

𝑓
′

𝑔
′

ℎ
′

(TR4) “Octahedron axiom”. See [20, Appendix A].

Example 9.21. Let C be an abelian category (e.g. Ab). Define the category of chain complexes in C

Kom(C) := (Chain complexes in C, chain maps)

and its homotopy category

HoKom(C) := (Homotopy classes of chain complexes in C, homotopy classes of chain maps).

Then HoKom(C) is triangulated. The suspension is the shift functor 𝐴∗ ↦→ 𝐴[1]∗ where 𝐴[1]𝑛 := 𝐴𝑛+1. The
exact triangles are mapping cone triangles.

Definition 9.22. Let T be a triangulated category. An additive functor 𝐹 : T → Ab is called a homological
functor, if it creates long exact sequences from exact triangles. More precisely, given an exact triangle Σ𝐶 →
𝐴→ 𝐵 → 𝐶 there is an induced long exact sequence

· · · → 𝐹 (Σ𝐵) → 𝐹 (Σ𝐶) → 𝐹 (𝐴) → 𝐹 (𝐵) → 𝐹 (𝐶) → 𝐹 (Σ−1

𝐴) → · · · .

A cohomological functor is defined likewise by replacing T with Top

and reversing the arrows.

Lemma 9.23. For any object 𝐷 in T, the functor T(𝐷,−) : T→ Ab is homological.

Proof. Let Σ𝐶 → 𝐴
𝑓
−→ 𝐵

𝑔
−→ 𝐶 be an exact triangle. It suffices to check the exactness of

T(𝐷,𝐴)
𝑓∗−→ T(𝐷, 𝐵)

𝑔∗−→ T(𝐷,𝐶) .

Exactness at all other places follows from the rotation axiom (TR2).
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• im 𝑓∗ ⊆ ker𝑔∗. By functoriality of T(𝐷,−), it suffices to prove that 𝑔 ◦ 𝑓 = 0. Consider the diagram

Σ𝐶 𝐴 𝐵 𝐶

Σ𝐶 0 𝐶 𝐶

Σ id

𝑓

0

𝑔

𝑔
id

id

with all the solid-line arrows. By (TR3), the diagram has to be a morphism of triangles, so we obtain a

map𝐴→ 0, which has to be the zero arrow. Then the diagram commutes implies that𝑔◦ 𝑓 = id ◦𝑔◦ 𝑓 = 0.

• im 𝑓∗ ⊇ ker𝑔∗. By (TR0) and the rotation axiom (TR2), the diagram

0→ 𝐷
id−→ 𝐷 → 0

is also an exact triangle. Now suppose 𝜙 ∈ ker𝑔∗. That is, 𝜙 : 𝐷 → 𝐵 satisfies 𝑔 ◦ 𝜙 = 0. Then the

following diagram (with all solid-line arrows) commutes:

0 𝐷 𝐷 0

Σ𝐶 𝐴 𝐵 𝐶.

0

id

˜𝜙 𝜙 0

𝑓 𝑔

Now by (TR3), there exists an dash-line arrow
˜𝜙 : 𝐷 → 𝐴 makeing the diagram a morphism of triangles.

Then we obtain 𝜙 = 𝜙 ◦ id = 𝑓 ◦ ˜𝜙 since the diagram commutes. Therefore 𝜙 ∈ im 𝑓∗. □

Theorem 9.24. KK is triangulated. Its suspension is 𝐴 ↦→ S𝐴 and its exact triangles are triangles which are

isomorphic to mapping cone triangles S𝐴→ C𝑓 → 𝐴
𝑓
−→ 𝐵 for a suitable ∗-homomorphism 𝑓 : 𝐴→ 𝐵.

Remark 9.25. Equivalently, the exact triangles can also be defined in terms of extension triangles

S𝑄 → 𝐼 → 𝐸 → 𝑄

where 𝐼
𝑖
↣ 𝐸

𝑞
↠ 𝑄 is a semi-split extension of C

∗
-algebras. The extension defines a class in KK

1
(𝑄, 𝐼 ) �

KK(S𝑄, 𝐼 ) and this is the arrow S𝑄 → 𝐼 . Mapping cone extensions are semi-split, hence they are all extension

triangles. Conversely, given an extension triangle, there is an KK-equivalence 𝐼 ∼
KK

C𝑞 . So any extension

triangle is isomorphic to a mapping cone triangle.

Proof. We need to check the axioms (TR0)–(TR4). The proof can be found in [20, Appendix A]. Here we sketch

the proof of (TR1)–(TR3)
4

.

For (TR0), notice that the mapping cone C
id
= C𝐴 is the cone of 𝐴. This is a contractible C

∗
-algebra and

hence KK-equivalent to 0. Then we have an isomorphism between S𝐴→ 0→ 𝐴→ 𝐴 and the mapping cone

triangle of id : 𝐴→ 𝐴.

For (TR1). If 𝑓 ∈ KK(𝐵,𝐶) is induced by a
∗
-homomorphism, then we simply use its mapping cone triangle.

In the general case, we need to identify 𝑓 with a
∗
-homomorphism up to KK-equivalence. This can be done

using Cuntz’s picture [9]: any element in KK(𝐵,𝐶) can be represented by a
∗
-homomorphism q𝐵 → 𝐶 ⊗ K,

where q𝐵 is a C
∗
-algebra that is KK-equivalent to 𝐵. Then we have several KK-equivalences q𝐵 ∼

KK
𝐵

and 𝐶 ⊗ K ∼
KK

𝐶 . Together with the axiom (TR3), they provide an isomorphism between two triangles, one of

which is a mapping cone triangle and hence exact.

For (TR2). It suffices to look at mapping cone triangles by (TR0) and (TR1). Given a mapping cone

triangle S𝐵 → C𝑓

𝜋𝐴−−→ 𝐴
𝑓
−→ 𝐵, the triangle S𝐴→ S𝐵 → C𝑓

𝜋𝐴−−→ 𝐴 is isomorphic to a mapping cone triangle

because S𝐵 is homotopy equivalent to C𝜋𝐴
, see the proof of Theorem 6.15.

4

Sketching is already quite long...
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For (TR3), this is done by some suitable gluing. Given two mapping cone triangles together with arrows

S𝐵 C𝑓 𝐴 𝐵

S𝐵
′

C𝑓
′ 𝐴

′
𝐵
′

S𝛽

𝑓

𝛼 𝛽

𝑓
′

where 𝑓 : 𝐴→ 𝐵 and 𝑓
′
: 𝐴
′ → 𝐵

′
are
∗
-homomorphisms, 𝛼 ∈ E(𝐴,𝐴′) and 𝛽 ∈ E(𝐵, 𝐵′) are Kasparov modules

which represent KK-theory classes. The diagram commutes implies that 𝑓
∗(𝛽) are 𝑓

′
∗ (𝛼) are homotopic

Kasparov modules. Let 𝐻 ∈ E(𝐴, I𝐵) be a homotopy connecting them. Define

I𝑓
′ := {(𝑎, 𝜙) ∈ 𝐴′ ⊕ I𝐵

′ | 𝑓 ′(𝑎) = ev
1
(𝜙)}

to be the mapping cylinder of 𝑓
′
. Then 𝛼 ⊕ 𝐻 ∈ E(𝐴, I𝑓 ′) because 𝑓 ′∗ (𝛼) = (ev

1
)∗𝐻 .

There is a homotopy equivalence between the C
∗
-algebras 𝐴

′
and I𝑓

′ given by

𝜄 : 𝐴
′ �−→ I𝑓

′, 𝑎 ↦→ (𝑎, 𝑡 ↦→ 𝑓
′(𝑎))

𝜋 : I𝑓
′
�−→ 𝐴

′
, (𝑎, 𝜙) ↦→ 𝑎.

And we may use this map 𝜋 : I𝑓
′
�−→ 𝐴

′
to get 𝜋∗(𝛼 ⊕𝐻 ) ∈ E(𝐴,𝐴′). We pullback it to 𝜋

∗
𝐴𝜋∗(𝛼 ⊕𝐻 ) ∈ E(C𝑓 , 𝐴

′).
Now consider 𝜏

C
0
(0,1]𝛽 ∈ E(C𝐵,C𝐵′). Use 𝜋

C𝐵 : C𝑓 → C𝐵 to pull it back to 𝜋
∗
C𝐵 (𝜏C

0
(0,1]𝛽) ∈ E(C𝑓 ,C𝐵

′).
Then the Kasparov module

𝜋
∗
𝐴𝜋∗(𝛼 ⊕ 𝐻 ) ⊕ 𝜋∗C𝐵 (𝜏C

0
(0,1]𝛽) ∈ E(C𝑓 ,C𝑓

′)

defines the desired in KK(C𝑓 ,C𝑓
′). □

9.2.3 Proof of the Universal Coefficient Theorem

Homological algebra in non-abelian categories is always relative, we need additional structure to get started5. In a

triangulated category T this can be worked out by ideals. An ideal in a triangulated category T is a family of

subgroups I(𝐴, 𝐵) ⊆ T(𝐴, 𝐵) for all 𝐴, 𝐵, satisfying

T(𝐶, 𝐷) ◦ I(𝐵,𝐶) ◦ T(𝐴, 𝐵) ⊆ I(𝐴, 𝐷)

for all 𝐴, 𝐵,𝐶, 𝐷 . In our situation, we only care about the ideal

ker K∗ := {𝑓 | K∗(𝑓 ) = 0}.

Given any separable C
∗
-algebra 𝐴, K∗(𝐴) is a countably-generated Z/2-graded abelian group. So K∗(𝐴) has

a length-one projective resolution. Given such a resolution, can we lift it to some kind of resolution of

C
∗
-algebras?

Definition 9.26. • An exact triangle Σ𝐶 → 𝐴→ 𝐵 → 𝐶 in KK is a K∗-exact triangle, if

0→ K∗(𝐴) → K∗(𝐵) → K∗(𝐶) → 0

is a short exact sequence.

• A homological functor 𝐹 : KK → Ab is K∗-exact functor, if it maps K∗-exact triangles to short exact

sequences.

• A C
∗
-algebra 𝐴 is called K∗-projective if KK(𝐴,−) is K∗-exact.

Example 9.27. • The exact triangles defined by split extensions are K∗-exact.

5

c.f. [21, Introduction]
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• K∗ is K∗-exact.

• C and C
0
(R) are K∗-projective because KK(C,−) = K

0
and KK(C

0
(R),−) = K

1
.

Lemma 9.28 ([21, Theorem 3.41]). 𝐴 is K∗-projective iff K∗(𝐴) is projective and there is a natural isomorphism

KK(𝐴, 𝐵) � Hom(K∗(𝐴),K∗(𝐵))

for all 𝐵.

Lemma 9.29. Every separable C
∗-algebra has a K∗-projective resolution of length-one.

Idea of the proof. A countably-generated projective Z/2-graded abelian group has the form⊕
𝐼
0

Z ⊕
⊕
𝐼
1

Z

with

⊕
𝐼
0

Z the even part and

⊕
𝐼
1

Z the odd part. Define

K
† ©«

⊕
𝐼
0

Z ⊕
⊕
𝐼
1

Z
ª®¬ :=

⊕
𝐼
0

C ⊕
⊕
𝐼
1

C
0
(R) .

This is a functor which restricts to an equivalence between countably-generated projective Z/2-graded abelian

group and K∗-projective objects in KK ([21, Theorem 3.39, Theorem 3.41]). Now given a projective resolution

0→ 𝐻
1
→ 𝐻

0
→ K∗(𝐴) → 0

of K∗(𝐴). Applying the functor K
†
we obtain a K∗-projective resolution

0→ K
†(𝐻

1
) → K

†(𝐻
0
) → 𝐴→ 0. □

Now we sketch the proof of UCT.

Proof of UCT. • Given a C
∗
-algebra 𝐴, by Lemma 9.29 there is a length-one K∗-projective resolution

0→ 𝑃
1

𝑑−→ 𝑃
0
→ 𝐴→ 0.

• A Lemma:

Lemma 9.30. If 𝐴 is in the bootstrap class, then the extension 𝑃
1
↣ 𝑃

0
↠ 𝐴 embeds in an exact triangle

S𝐴→ 𝑃
1
→ 𝑃

0
→ 𝐴.

• Apply the cohomological functor KK(−, 𝐵) (Lemma 9.23) to obtain a long exact sequence

KK(𝑃
1
, 𝐵) KK(𝑃

0
, 𝐵) KK(𝐴, 𝐵)

KK
1
(𝐴, 𝐵) KK

1
(𝑃

0
, 𝐵) KK

1
(𝑃

1
, 𝐵)

𝑑
∗

𝑑
∗

which cuts down to the short exact sequence

0→ coker𝑑
∗ → KK(𝐴, 𝐵) → ker𝑑

∗ → 0. (5)

• By Lemma 9.28, identify the following 𝑑
∗
’s:

KK(𝑃
0
, 𝐵) KK(𝑃

1
, 𝐵)

Hom(K∗(𝑃0
),K∗(𝐵)) Hom(K∗(𝑃1

),K∗(𝐵))

𝑑
∗

� �

𝑑
∗
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• By Lemma 9.14 and the fact that K∗(𝑃0
) is projective, we have a long exact sequence

0← ExtZ(K∗(𝐴),K∗(𝐵)) ← Hom(K∗(𝑃1
),K∗(𝐵))

𝑑
∗

←− Hom(K∗(𝑃0
),K∗(𝐵)) ← Hom(K∗(𝐴),K∗(𝐵)) ← 0.

So we may identify ExtZ(K∗(𝐴),K∗(𝐵)) � coker𝑑
∗
and Hom(K∗(𝐴),K∗(𝐵)) � ker𝑑

∗
. Substitute the

corresponding terms in (5) we obtain the UCT. □

May 24, 2022

Finite summability in K-homology
Speaker: Dimitris Gerontogiannis (Leiden University)

10.1 Historical review of K-homology

We have had a glance at K-homology before (Section 6.2.3). There are several different approaches to it.

10.1.1 Abstract definition of K-homology

Definition 10.1. Let 𝑋 be a finite CW-complex. Choose an embedding 𝑋 ↩→ R𝑛+1
↩→ S𝑛+1

. The compli-

ment S𝑛+1 \ 𝑋 deformation retracts to a dual complex D𝑛𝑋 up to suspension. That is, we have a homotopy

equivalence Σ(S𝑛+1 \ 𝑋 ) ≃ Σ(D𝑛𝑋 ). The space D𝑛𝑋 is called the Spanier–Whitehead dual of 𝑋 . Define the
K-homology of 𝑋 to be

K
0
(𝑋 ) := K

0(D𝑛𝑋 ).

This definition does not depend on 𝑛, not even depend on the choice 𝑋 ↩→ S𝑛+1
.

10.1.2 Atiyah’s approach (1970s)

Let𝑀 be a closed, smooth manifold. Let 𝐷 be an elliptic operator on𝑀 . There exists a well-defined index map

Index𝐷 : K
0(𝑀) → Z, [𝐸] ↦→ ind(𝐷𝐸),

where 𝐷𝐸 is the operator 𝐷 “twisted” by the vector bundle 𝐸. The construction uses a connection, but it turns

out that ind(𝐷𝐸) does not depend on the choice of the connection.

Similarly, if 𝑋 is a finite CW-complex. Let 𝑃 ∈ B(H
1
,H

2
) be a bounded operator between two Hilbert

spaces (say, the 𝐿
2

-sections of some vector bundles) such that [𝑃, 𝑓 ] ∈ K for all 𝑓 ∈ C(𝑋 ), and there exists a

parametrix 𝑄 such that 1 − 𝑃𝑄 ∈ K and 1 −𝑄𝑃 ∈ K. Then we say 𝑃 is an elliptic operator on 𝑋 , and there is a

well-defined index map

Index𝑃 : K
0(𝑀) → Z, [𝐸] ↦→ ind(𝑃𝐸) .

Define Ell(𝑋 ) to be the set of all elliptic operators on 𝑋 . The construction above gives rise to a map

Ell(𝑋 ) → HomZ(K0(𝑋 ),Z).

There is also a map

K
0
(𝑋 ) → HomZ(K0(𝑋 ),Z),

and by the universal coefficient theorem in (generalised) (co)homology theories: this is a rational isomorphism.

So we have a map

Ell(𝑋 ) → K
0
(𝑋 ) ⊗Z Q.

But Atiyah realised that this map actually factors through a map Ell(𝑋 ) → K
0
(𝑋 ).
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10.1.3 Brown–Douglas–Fillmore theory (1960s)

There is a close relation between extensions of C
∗
-algebras and K-homology.

Theorem 10.2 (Weyl–von Neumann). LetH be a separable Hilbert space,𝑇
1
,𝑇

2
∈ B(H) be self-adjoint operators.

Then

𝑇
1
is essentially unitarily equivalent to 𝑇

2
iff 𝑇

1
and 𝑇

2
have the same essential spectrum.

One tries to extend this result to (essentially) normal operators. But there can be obstructions for two

such operators (with the same essential spectrum) to be essentially unitarily equivalent. One of them is the

Fredholm indices of the Fredholm alternatives of 𝑇𝑖 . Brown–Douglas–Fillmore (BDF) theory claims that this is

the only obstruction.

Theorem 10.3 (Brown–Douglas–Fillmore). LetH be a separable Hilbert space, 𝑇
1
,𝑇

2
∈ B(H) be essentially

normal operators with the same essential spectrum 𝑋 . Then

𝑇
1
is essentially unitarily equivalent to 𝑇

2
iff ind(𝑇

1
− 𝜆) = ind(𝑇

2
− 𝜆) for all 𝜆 ∈ C \ 𝑋 .

Idea of the proof. Define Ext(𝑋 ) to be the set{
Essentially unitary equivalence classes of essentially normal operators

with essential spectrum 𝑋

}
.

Let [𝑇 ] ∈ Ext(𝑋 ) where 𝑇 is essentially normal and has essential spectrum 𝑋 . Then there is a well-defined

group homomorphism

K
1(𝑋 ) → Z, [𝑧 − 𝜆] ↦→ ind(𝑇 − 𝜆) .

By universal coefficient theorem, this induces an isomorphism Ext(𝑋 ) → HomZ(K1(𝑋 ),Z). □

10.1.4 Kasparov’s approach (1970s)

Definition 10.4. Let 𝐴 be a C
∗
-algebra. An odd Fredholm module over 𝐴 is (H , 𝜌, 𝐹 ) where

• H is a separable Hilbert space.

• 𝜌 : 𝐴→ B(H) is a ∗-homomorphism.

• 𝐹 ∈ B(H) satisfies
[𝐹, 𝜌 (𝑎)], 𝜌 (𝑎) (𝐹 2 − 1), 𝜌 (𝑎) (𝐹 − 𝐹 ∗) ∈ K(H), for all 𝑎 ∈ 𝐴.

An even Fredholm module over 𝐴 is the Z/2-graded version.

Remark 10.5. Using some similar trick that we have mentioned before, we can take 𝐹 = 𝐹
∗
and 𝐹

2

= 1. In this

case we call the Fredholm module normalised.

Definition 10.6. The K-homology groups K
0(𝐴) (respectively, K1(𝐴)) is defined as the abelian group generated

by even (respectively, odd) Fredholm modules up to operator homotopy (Section 4.3.2). This means that 𝑋

and 𝑋
′
define the same K-homology class iff there is a degenerate 𝑋

′′
such that 𝑋 ⊕ 𝑋 ′′ is operator homotopic

to 𝑋
′ ⊕ 𝑋 ′′.

Definition 10.7. Let (H , 𝜌, 𝐹 ) be an even or odd Fredholm module. Define the index map Index(H,𝜌,𝐹 ) as
follows:

• If (H , 𝜌, 𝐹 ) is an even Fredholm module:

Index(H,𝜌,𝐹 ) : K
0
(𝐴) → Z, [𝑒] ↦→ ind(𝜌− (𝑒)𝐹+𝜌+(𝑒)),

where 𝑒 is a projection, 𝜌 =
( 𝜌+

𝜌−

)
and 𝐹 =

(
𝐹+

𝐹−

)
with respect to the grading

(
1 0

0 −1

)
.

• If (H , 𝜌, 𝐹 ) is an odd Fredholm module:

Index(H,𝜌,𝐹 ) : K
1
(𝐴) → Z, [𝑢] ↦→ ind(𝑃𝜌 (𝑢)𝑃),

where 𝑃 := 𝐹+1
2
.

How do you compute these indices? Connes discovered a very useful formula, but we need some smooth-

ness/summability conditions.
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10.2 Finite summability in K-homology

10.2.1 Smooth extensions (Douglas, 1980s)

Douglas defined fine analytic properties of extensions. Recall that

Definition 10.8. LetH be a separable Hilbert space. The Schatten 𝑝-ideal is the two-sided (non-closed) ideal

L𝑝 (H) := {𝑇 ∈ K(H) | (s𝑛 (𝑇 ))𝑛∈N ∈ ℓ𝑝 (N)},

where s𝑛 (𝑇 )’s denote the singular values of 𝑇 .

Definition 10.9. Let A be a dense
∗
-subalgebra of a C

∗
-algebra 𝐴. We say that an extension 𝜏 : 𝐴→ Q(H) is

𝑝-smooth on A, if there exists a linear map 𝜂 : 𝐴→ B(H), such that

𝜂 (𝑎𝑏) − 𝜂 (𝑎)𝜂 (𝑏) ∈ L𝑝 (H), 𝜂 (𝑎∗) − 𝜂 (𝑎) ∈ L𝑝 (H) for all 𝑎, 𝑏 ∈ A,

and

𝜏 (𝑎) = 𝜂 (𝑎) + K(H) for all 𝑎 ∈ A .

Example 10.10. Let 𝑋 be a compact metrisable space, 𝜏 : C(𝑋 ) → Q(H). Let 𝑋 ↩→ C𝑛
be an embedding

and restrict the coordinate functions {𝑧𝑖}𝑛𝑖=1
to 𝑋 . Then 𝜏 is 𝑝-smooth if there exists {𝑇𝑖}𝑛𝑖=1

⊆ B(H), such
that 𝜏 (𝑧𝑖) = 𝑇𝑖 + K(H) and that [𝑇𝑖 ,𝑇𝑗 ] ∈ L𝑝 (H), [𝑇𝑖 ,𝑇 ∗𝑖 ] ∈ L𝑝 (H) .

Theorem 10.11 (Douglas–Voiculescu). If 𝑛 ≥ 2. Then every (𝑛 − 1)-smooth extension of C(S2𝑛−1) is trivial,
and there exists non-trivial 𝑝-smooth extensions for 𝑝 > 𝑛.

10.2.2 Finite summable Fredholm modules (1980s)

Definition 10.12. Let (H , 𝜌 : 𝐴→ B(H), 𝐹 ) be an normalised (i.e. 𝐹
2

= 1 and 𝐹 = 𝐹
∗
) even or odd Fredholm

module. It is 𝑝-summable on a dense
∗
-subalgebra A if [𝐹, 𝜌 (𝑎)] ∈ L𝑝 (H) for all 𝑎 ∈ A.

Remark 10.13. There are several “layers” of representatives of K-homology classes:

Spectral triples⇒ Fredholm modules⇒ Extensions

Each higher layer representativewith fine analytic properties (smoothness) gives rise to some analytic properties

to the lower level representatives:

Theorem 10.14. Let (H , 𝜌, 𝐹 ) be a 𝑝-summable spectral triple on A ⊆ 𝐴. Then there is a 𝑝/2-smooth exten-
sion 𝜏 : 𝐴→ Q(H) on A, defined by

𝜏 : 𝐴→ Q(H), 𝜏 (𝑎) := 𝑃𝜌 (𝑎)𝑃
𝜂 : A → B(H), 𝜂 (𝑎) := 𝑃𝜌 (𝑎)𝑃 .

where 𝑃 := 𝐹+1
2
.

Proof. Notice that

𝑃𝜌 (𝑎𝑏)𝑃 − 𝑃𝜌 (𝑎)𝑃2

𝜌 (𝑏)𝑃 = −𝑃 [𝑃, 𝜌 (𝑎)] [𝑃, 𝜌 (𝑏)] ⊆ L𝑝 · L𝑝 ⊆ L𝑝/2

. □

This cannot, however, be reversed: it is sometimes not even possible to find, e.g. spectral triples with

smoothness conditions, out of a summable Fredholm module.

Theorem 10.15 (Connes’ index formula). Let (H , 𝜌, 𝐹 ) be an even or odd Fredholm module over a C
∗-algebra 𝐴,

which is 𝑝-summable on a dense ∗-subalgebra A ⊆ 𝐴 satisfying K∗(A) � K∗(𝐴) (e.g. if A is closed under
holomorphic functional calculus). Then the index map Index(H,𝜌,𝐹 ) is given by the following formulas:
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• If (H , 𝜌, 𝐹 ) is even:

Index(H,𝜌,𝐹 ) ( [𝑒]) = 𝑎𝑛 str(𝑒 [𝐹, 𝑒]𝑛), for 𝑒 a projection in A.

• If (H , 𝜌, 𝐹 ) is odd:

Index(H,𝜌,𝐹 ) ( [𝑢]) = 𝑏𝑛 tr(𝑢∗( [𝐹,𝑢] [𝐹,𝑢∗])𝑛 [𝐹,𝑢]), for 𝑢 a unitary in A.

Here 𝑛 is any even number, which is large enough such that 𝑒 [𝐹, 𝑒]𝑛 (or 𝑢∗( [𝐹,𝑢] [𝐹,𝑢∗])𝑛 [𝐹,𝑢]) is trace-class; 𝑎𝑛
and𝑏𝑛 are constants depending only on𝑛; tr is the trace on B(H) and str is the supertrace on the Z/2-graded B(H).

Example 10.16 (Toeplitz index theorem). Let𝐴 = C(T). Then𝐴 is represented onH = 𝐿
2(T) via multiplication.

Let 𝑃 : H → H be the projection onto the Hardy space

H
2(T) := span{𝑧𝑛 | 𝑛 ≥ 0}

and define 𝐹 := 2𝑃 − 1.

Let 𝑓 ∈ C(T). Then:

• [𝐹, 𝑓 ] has finite rank iff 𝑓 is a trigonometric polynomial.

• For any 𝑝 > 1: [𝐹, 𝑓 ] ∈ L𝑝 (H) iff 𝑓 ∈ C
∞(T).

Let A := C
∞(T). Then the Fredholm module (H , 𝜌, 𝐹 ) is 𝑝-summable on A for any 𝑝 > 1. Connes’ index

formula yields

Index(H,𝜌,𝐹 ) ( [𝑢]) = −
1

2𝜋𝑖

∫
𝑢
−1

d𝑢 = −wind(𝑢),

for 𝑢 ∈ C
∞(T) unitary. This is the Toeplitz index theorem.

Example 10.17 (Reduced group C
∗
-algebra of free group). Let 𝐴 := C

∗
r
(F

2
) be the reduced group C

∗
-algebra

of F
2
, the free group of two generators. This is the closed linear span (closed under the operator norm)

of {𝛿𝑔 | 𝑔 ∈ F
2
}. Let 𝑇 be the graph whose vertices are 𝑇

0

= F
2
and whose edges 𝑇

1

are such that there is a

unique edge between 𝑔 and ℎ iff 𝑔ℎ
−1

is a generator or its inverse. Then F
2
acts on 𝑇 . This induces an action

𝜌 : 𝐴→ B(H), whereH := ℓ
2(𝑇 0) ⊕ ℓ

2(𝑇 1).

Define

𝑈 : ℓ
2(𝑇 0) → ℓ

2(𝑇 1), 𝑈 (𝛿𝑣) :=

{
0 𝑣 = 1,

𝛿ℓ (𝑣) otherwise,

where ℓ (𝑣) is the unique edge connecting 𝑣 to the unique edge closet to the neutral element 1 ∈ F
2
.

Define

𝐹 :=

(
0 𝑈

∗

𝑈 0

)
: H → H .

Then 𝐹 = 𝐹
∗
. 𝐹

2 − 1 has rank 1. [𝐹, 𝜌 (𝛿𝑔)] has finite rank for all 𝑔 because 𝛿𝑔𝑈𝛿
𝑔
−1 −𝑈 has finite rank.

Let A be the closure of CF
2
under holomorphic functional calculus. Then A is dense in 𝐴 because it

contains a dense subset CF
2
. And (H , 𝜌, 𝐹 ) is 1-summable on A.

Lemma 10.18. Let 𝑃 ∈ B(H
1
,H

2
) and 𝑄 ∈ B(H

2
,H

1
) be bounded operators between Hilbert spaces such

that 1 − 𝑃𝑄 and 1 −𝑄𝑃 are trace class. Then

ind(𝑃) = tr(1 −𝑄𝑃) − tr(1 − 𝑃𝑄) .

Theorem 10.19 (Kaplansky conjecture for F2). There are no non-trivial projections in C
∗
r
(F

2
).
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Proof by Connes–Cuntz. Let (H , 𝜌, 𝐹 ) be the normalisation of the Fredholm module as above, that is, 𝐹
2

= 1.

It is 1-summable on A. By Connes’ index formula, we have

Index(H,𝜌,𝐹 ) ( [𝑒]) =
1

2

tr

((
1

−1

)
𝐹 [𝐹, 𝜌 (𝑒)]

)
, if 𝑒 is a projection in A .

Let 𝜏 : C
∗
r
(F

2
) → C be the canonical trace, i.e. 𝜏 (𝛿

1
) = 1 and 𝜏 (𝛿𝑔) = 0 for 𝑔 ≠ 1. It is faithful and positive. In

particular, we have

𝜏 (𝑎) = 1

2

tr

((
1

−1

)
𝐹 [𝐹, 𝜌 (𝑎)]

)
, if 𝑎 ∈ A .

Now let 𝑒 ∈ 𝐴 be a projection. It is unitarily equivalent to a projection 𝑒
′ ∈ A because the inclusion A ↩→ 𝐴

induces an isomorphism K
0
(A) �−→ K

0
(𝐴) (since A is stable under holomorphic calculus). Then

𝜏 (𝑒) = 𝜏 (𝑢𝑒′𝑢∗) = 𝜏 (𝑒′) = Index(H,𝜌,𝐹 ) ( [𝑒′])

must be an integer. Since 𝑒 is a projection, we have 𝜏 (𝑒) ∈ [0, 1]. Therefore 𝜏 (𝑒) = 1 or 𝜏 (𝑒) = 0.

If 𝜏 (𝑒) = 0. Then 𝜏 (𝑒∗𝑒) = 𝜏 (𝑒2) = 𝜏 (𝑒) = 0. Since 𝜏 is faithful, this means 𝑒
∗
𝑒 = 0, so 𝑒 = 0. If 𝜏 (𝑒) = 1.

Then 𝜏 (1 − 𝑒) = 𝜏 (1) − 𝜏 (𝑒) = 0 and 1 − 𝑒 is also a projection. Then 1 − 𝑒 = 0 and 𝑒 = 1. Above all, 𝑒 = 0

or 𝑒 = 1. □

June 7, 2022

E-theory
Speaker: Mick Gielen (Radboud University Nijmegen)

Throughout this section, we shall always work with separable C
∗
-algebras.

Motivation Recall that the canonical functor C∗Sep→ KK is the universal split-exact, homotopy-invariant,

stable functor. This means if 𝐹 : C∗Sep→ C is a functor into an additive category C which satisfies the same

properties, then 𝐹 factors uniquely through KK.
If one replaces “split-exact” by “half-exact”, then the universal functor is another canonical functorC∗Sep→

E, where E is the E-theory category. The composition of arrows in this category is an analog of the Kasparov

product, but has an easier formulation.

11.1 Asymptotic morphisms

Definition 11.1. Let 𝐴 and 𝐵 be C
∗
-algebras. An asymptotic morphism from 𝐴 to 𝐵 is a family of maps (not

even necessarily linear)

{𝜙𝑡 : 𝐴→ 𝐵}𝑡 ∈[1,∞)
such that:

• For all 𝑎 ∈ 𝐴, 𝑡 ↦→ 𝜙𝑡 (𝑎) is continuous.
• {𝜙𝑡 } is “asymptotically”

∗
-linear and multiplicative. That is,

lim

𝑡→∞
∥𝜙𝑡 (𝑎 + 𝑏) − 𝜙𝑡 (𝑎) − 𝜙𝑡 (𝑏)∥ → 0, lim

𝑡→∞
∥𝜙𝑡 (𝑎∗) − 𝜙𝑡 (𝑎)∗∥ → 0, lim

𝑡→∞
∥𝜙𝑡 (𝑎𝑏) − 𝜙𝑡 (𝑎)𝜙𝑡 (𝑏)∥ → 0.

Definition 11.2. A homotopy between asymptotic morphisms {𝜙0

𝑡 : 𝐴 → 𝐵}𝑡 and {𝜙1

𝑡 : 𝐴 → 𝐵}𝑡 is an

asymptotic morphism

{Φ𝑡 : 𝐴→ I𝐵}𝑡 ∈[1,∞)
such that ev𝑡 ◦Φ𝑡 = 𝜙

𝑖
𝑡 for 𝑖 = 0, 1 and 𝑡 ∈ [1,∞).

We write ⟦𝐴, 𝐵⟧ for the set of homotopy classes of asymptotic morphisms 𝐴 to 𝐵, and ⟨𝜙𝑡 ⟩𝑡 ∈[1,∞) for
homotopy class of an asymptotic morphism {𝜙𝑡 }𝑡 ∈[1,∞) . We shall omit the subscript 𝑡 ∈ [1,∞) occasionally.
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Notice that we have a map

[𝐴, 𝐵] → ⟦𝐴, 𝐵⟧, [𝜙] ↦→ ⟨𝜙𝑡 := 𝜙 : 𝐴→ 𝐵⟩𝑡

where [𝐴, 𝐵] denotes the homotopy classes of
∗
-homomorphisms 𝐴 to 𝐵. [𝜙] is the homotopy class of 𝜙

in [𝐴, 𝐵]. ⟨𝜙𝑡 ⟩ is the homotopy class of {𝜙𝑡 } in ⟦𝐴, 𝐵⟧.

Definition 11.3. Two asymptotic morphisms {𝜙𝑡 : 𝐴→ 𝐵} and {𝜓𝑡 : 𝐴→ 𝐵} are called equivalent, if

lim

𝑡→∞
∥𝜙𝑡 (𝑎) −𝜓𝑡 (𝑎)∥ = 0, for all 𝑎 ∈ 𝐴.

In this case we have [𝜙] = [𝜓 ] ∈ ⟦𝐴, 𝐵⟧.

Proposition 11.4. Let {𝜙𝑡 : 𝐴→ 𝐵} be an asymptotic morphism. Then

lim sup

𝑡→∞
∥𝜙𝑡 (𝑎)∥ ≤ ∥𝑎∥, for any 𝑎 ∈ 𝐴

i.e. {𝜙𝑡 } is “asymptotically contractive”.
So {𝜙𝑡 } defines a map 𝜙 : 𝐴→ C

b
( [1,∞), 𝐵), which induces a ∗-homomorphism

𝜙 : 𝐴→ 𝐵∞ := C
b
( [1,∞), 𝐵)/C

0
( [1,∞), 𝐵) .

In particular, 𝜙 = 𝜓 iff {𝜙𝑡 } is equivalent to {𝜓𝑡 }.
Conversely, if 𝜙 : 𝐴→ 𝐵∞ is a ∗-homomorphism. Then it induces an asymptotic morphism {𝜙𝑡 : 𝐴→ 𝐵} by

picking a set-theoretic lift 𝜙 : 𝐴→ C
b
( [1,∞), 𝐵) and define 𝜙𝑡 (𝑎) := 𝜙 (𝑎) (𝑡). Different lifts determines the same

asymptotic morphism up to equivalence.

Definition 11.5. An asymptotic morphism {𝜙𝑡 : 𝐴→ 𝐵} is completely positive (cp for short), if 𝜙𝑡 : 𝐴→ 𝐵 is a

completely positive and contractive
∗
-linear map for all 𝑡 .

We write ⟦𝐴, 𝐵⟧
cp
for the homotopy classes of cp asymptotic morphisms.

Example 11.6. Suppose 𝐴 is nuclear and {𝜙𝑡 : 𝐴 → 𝐵} is an asymptotic morphism. Then the induced
∗
-

homomorphism 𝜙 : 𝐴→ 𝐵∞ lifts to a cpc map 𝐴→ C
b
( [1,∞), 𝐵). Since different lifts differ by a map which is

asymptotically vanishing, they define equivalent asymptotic morphisms. Therefore, {𝜙𝑡 } is equivalent to a cp

asymptotic morphism. So ⟦𝐴, 𝐵⟧
cp

= ⟦𝐴, 𝐵⟧ if 𝐴 is nuclear.

11.1.1 Tensor product

If {𝜙𝑡 : 𝐴 → 𝐶} and {𝜓 : 𝐵 → 𝐷} are asymptotic morphisms. Then we can define their tensor product

asymptotic morphism

{𝜙𝑡 ⊗max
𝜓𝑡 : 𝐴 ⊗

max
𝐵 → 𝐶 ⊗

max
𝐷}.

Notice that this only applies to the maximal tensor product of C
∗
-algebras.

In particular: we can define the suspension {S𝜙𝑡 : S𝐴→ S𝐵} of an asymptotic morphism {𝜙𝑡 : 𝐴→ 𝐵}.

11.1.2 Composition

Let {𝜙𝑡 : 𝐴→ 𝐵} and {𝜓𝑡 : 𝐵 → 𝐶} be asymptotic morphisms. In general {𝜓𝑡 ◦𝜙𝑡 : 𝐴→ 𝐶} is not an asymptotic

morphism (due to uniform convergence issues). But we have a simple solution.

Proposition 11.7. Let 𝑟 : [1,∞) → [1,∞) be a continuous, unbounded and increasing function. Then ⟨𝜓𝑟 (𝑡 )⟩ =
⟨𝜓𝑡 ⟩ ∈ ⟦𝐵,𝐶⟧.

If the function 𝑟 increases “quickly enough”. Then {𝜓𝑟 (𝑡 ) ◦ 𝜙𝑡 } is an asymptotic morphism, whose homotopy
class does not depend on the choice of the function 𝑟 . This gives a composition of maps

⟦𝐴, 𝐵⟧ × ⟦𝐵,𝐶⟧ → ⟦𝐴,𝐶⟧.
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11.1.3 Addition

Choose an isomorphism K � M
2
(K), we can define an addition on ⟦𝐴, 𝐵 ⊗ K⟧. Let {𝜙𝑡 : 𝐴 → 𝐵 ⊗ K}

and {𝜓𝑡 : 𝐴→ 𝐵 ⊗ K} be asympototic morphisms. Define the following asymptotic morphism

𝜙𝑡 ⊕𝜓𝑡 : 𝐴→ 𝐵 ⊗ (K ⊕ K) ↩→ 𝐵 ⊗ M
2
(K) � 𝐵 ⊗ K

as their sum.

This turns ⟦𝐴, 𝐵 ⊗ K⟧ into a semigroup, but not necessarily a group. In order to achieve a group structure,

we have to use suspensions to do some delooping.

Proposition 11.8. ⟦𝐴, S𝐵 ⊗ K⟧ is a group.

11.2 E-theory

Definition 11.9. Let 𝐴 and 𝐵 be C
∗
-algebras.

• The E-theory group E(𝐴, 𝐵) is defined as

E(𝐴, 𝐵) := ⟦S𝐴 ⊗ K, S𝐵 ⊗ K⟧.

• This gives an additive category E, whose

– Objects are separable C
∗
-algebras.

– Arrows are elements in E-theory groups.

• There is a cp variant of E-theory:

E
cp
(𝐴, 𝐵) := ⟦S𝐴 ⊗ K, S𝐵 ⊗ K⟧

cp
,

which will be shown to agree with KK-theory.

Let

𝐽 ↣ 𝐴
𝑞
↠ 𝐵 (∗)

be a short exact sequence of C
∗
-algebras. Let {𝑢𝑡 }𝑡 ∈[1,∞) be a continuous increasing approximate unit in 𝐽 ,

which is quasi-central for 𝐴: that is, 𝑢𝑡 asymptotically commmutes with 𝐴.

1. Let 𝜎 : 𝐵 → 𝐴 be a
∗
-linear splitting. Then the collection

𝜙𝑡 : S𝐵 → 𝐽 , 𝜙𝑡 (𝑓 ⊗ 𝑏) := 𝑓 (𝑢𝑡 )𝜎 (𝑏)

defines an asymptotic morphism, hence a class 𝜖𝑞 ∈ ⟦S𝐵, 𝐽⟧, which does not depend on {𝑢𝑡 } and 𝜎 .

This 𝜖𝑞 is called the connecting morphism.

2. If (∗) is cpc-split. Then we can choose the 𝜎 in 1 to be cpc. Then this defines an element

𝜖𝑞 ∈ ⟦S𝐵, 𝐽⟧cp
.

3. If (∗) splits, then 𝜖𝑞 = 0. In this case we can consider the C
∗
-algebra 𝐸 ⊆ I𝐴 generated by S𝐽 and {𝜏 (𝑎) |

𝑎 ∈ 𝐴} ⊆ I𝐴, where 𝜏 (𝑎) (𝑠) := (1 − 𝑠)𝑎 + 𝑠𝜎 (𝑞(𝑎)). Then we get an extension

S𝐽 ↣ 𝐸 ↠ 𝐴

whose connecting morphism 𝜂𝑞 ∈ ⟦S𝐴, S𝐽⟧ is called the splitting morphism.

Proposition 11.10. 𝜂𝑞 ⊕ S𝑞 defines an isomorphism in E(𝐴, 𝐽 ⊕ 𝐵). So C∗Sep→ E is split-exact.
By construction, C∗Sep → E is automatically homotopy-invariant and stable. So it factors through the

Kasparov category KK and there is a natural map KK(𝐴, 𝐵) → E(𝐴, 𝐵).
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Corollary 11.11. E-theory has Bott periodicity.

Definition 11.12.
E

0(𝐴, 𝐵) := E(𝐴, 𝐵), E
1(𝐴, 𝐵) := E(S𝐴, 𝐵) � E(𝐴, S𝐵) .

Theorem 11.13. E-theory is half-exact. i.e. for any extension 𝐽 ↣ 𝐴 ↠ 𝐵 of C
∗-algebras and any C

∗-algebra 𝐷 ,
the sequences E(𝐷, 𝐽 ) → E(𝐷,𝐴) → E(𝐷, 𝐵) and E(𝐵, 𝐷) → E(𝐴, 𝐷) → E(𝐽 , 𝐷) are exact in the middle.

Corollary 11.14. For any extension 𝐽 ↣ 𝐴 ↠ 𝐵 of C
∗-algebras, there is a six-term cyclic exact sequence

E
0(𝐷, 𝐽 ) E

0(𝐷,𝐴) E
0(𝐷, 𝐵)

E
1(𝐷, 𝐵) E

1(𝐷,𝐴) E
1(𝐷, 𝐽 ).

Such a six-term exact sequence exists in E
cp

if the extension 𝐽 ↣ 𝐴 ↠ 𝐵 is cpc-split. This is because the
connecting morphism 𝜖𝑞 is required to be cp.

11.2.1 E-theory as a universal functor

Theorem 11.15. The canonical functor C∗Sep→ E is the universal half-exact, homotopy-invariant and stable
functor. That is, let 𝐹 : C∗Sep → C be a half-exact, homotopy-invariant and stable functor into an additive
category C. Then it factors uniquely through C∗Sep→ E.

Sketch of proof. The most essential part is to construct the functor E→ C. Let 𝜙 be an asymptotic morphism

which represents a class ⟨𝜙⟩ ∈ ⟦S𝐴⊗K, S𝐵⊗K⟧ = E(𝐴, 𝐵). Wewish to define amorphism 𝐹 (⟨𝜙⟩) : 𝐹 (𝐴) → 𝐹 (𝐵).
We have ⟨S𝜙⟩ ∈ ⟦S2

𝐴 ⊗ K, S2

𝐵 ⊗ K⟧ = ⟦𝐴′, 𝐵′⟧ where 𝐴′ := S
2

𝐴 ⊗ K, 𝐵′ := S
2

𝐵 ⊗ K. It suffices to work with 𝐴
′

and 𝐵
′
: any half-exact, homotopy-invariant and stable functor 𝐹 satiesfies Bott periodicity (Theorem 2.7).

The asymptotic morphism ⟨S𝜙⟩ ∈ ⟦𝐴′, 𝐵′⟧ induces a
∗
-homomorphism S𝜙 : 𝐴

′ → 𝐵
′
∞ where 𝐵

′
∞ :=

C
b
( [1,∞), 𝐵′)/C

0
( [1,∞), 𝐵′). Define 𝐷 to be the pullback

𝐷 C
b
( [1,∞), 𝐵′)

𝐴
′

𝐵
′
∞.

𝜋
𝐴
′

S𝜙

There is an extension of C
∗
-algebras

C
0
( [1,∞), 𝐵′)↣ 𝐷

𝜋
𝐴
′
↠ 𝐴

′

which is cpc-split if 𝜙 is cp.

Let 𝜌𝑡 := 𝐷 → C
b
( [1,∞), 𝐵′)

ev𝑡−−→ 𝐵
′
. Then {𝜌𝑡 } defines an asymptotic morphism from 𝐷 to 𝐵

′
, which

is homotopic to {𝜌
1
} in an obvious way. It induces the

∗
-homomorphism 𝐷 → C

b
( [1,∞), 𝐵′) → 𝐵

′
∞, which

equals S𝜙 ◦ 𝜋𝐴′ because the pullback diagram commutes. Therefore,

⟨𝜌
1
⟩ = ⟨𝜌𝑡 ⟩ = ⟨S𝜙 ◦ 𝜋𝐴′⟩ = ⟨S𝜙⟩ ◦ ⟨𝜋𝐴′⟩ ∈ ⟦𝐷, 𝐵′⟧.

But C
0
( [1,∞), 𝐵′) is contractible! Since 𝐹 is half-exact, homotopy-invariant and stable functor, we have a long

exact sequence in 𝐹 , which implies that 𝐹 (𝜋𝐴′) is invertible. Then we may define

𝐹 (⟨𝜙⟩) := 𝐹 (𝜌
1
) ◦ 𝐹 (𝜋𝐴′)−1

: 𝐹 (𝐴′) → 𝐹 (𝐵′) .

This is the desired map E(𝐴, 𝐵) → Hom(𝐹 (𝐴′), 𝐹 (𝐵′)) = Hom(𝐹 (𝐴), 𝐹 (𝐵)). □
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Remark 11.16. If we work instead in E
cp
, then we shall start with a cp asymptotic morphism 𝜙 from S𝐴 ⊗ K

to S𝐵 ⊗ K. Then the extension C
0
( [1,∞), 𝐵′) ↣ 𝐷

𝜋
𝐴
′
↠ 𝐴

′
is cpc-split and hence induces a long exact sequence

in KK-theory. Then [𝜋𝐴′] ∈ KK(𝐷,𝐴′) is also invertible and the construction above gives a map E
cp
(𝐴, 𝐵) →

KK(𝐴, 𝐵). Since E
cp
is also split-exact, by universality ofKK-theorywe obtain another factorisationKK(𝐴, 𝐵) →

E
cp
(𝐴, 𝐵). These two maps are easily seen to be the inverse to each other. Hence we conclude that:

Corollary 11.17. • E
cp
(𝐴, 𝐵) � KK(𝐴, 𝐵) for all 𝐴, 𝐵.

• If 𝐴 is nuclear. Then ⟦𝐴, 𝐵⟧ = ⟦𝐴, 𝐵⟧
cp
(Example 11.6) and hence E(𝐴, 𝐵) � KK(𝐴, 𝐵).

June 14, 2022

K-theory of graph C∗-algebras
Speaker: Yufan Ge (Leiden University)

Graphs are a class of interesting mathematical objects which has been studied for a long time. The idea of

graph C
∗
-algebras can be dated back to the theory of quiver algebras, in which the vertices are labelled by

vector spaces and the edges are labelled by linear maps. In the situation of graph C
∗
-algebras, they are replaced

by Hilbert spaces and partial isometries.

In this section, we assume that all graphs are directed. The main reference for this section is [23].

12.1 Graph C∗-algebras

Definition 12.1. A graph is a quadruple 𝐸 = (𝐸0

, 𝐸
1

, 𝑟 , 𝑠), where 𝐸0

and 𝐸
1

are two sets and 𝑟, 𝑠 : 𝐸
1 ⇒ 𝐸

0

are

maps between them. An element in 𝐸
0

is called a vertice and an element in 𝐸
1

is called an edge. The maps 𝑟

and 𝑠 are called the range and source maps.

Let 𝑒 ∈ 𝐸1

with 𝑟 (𝑒) = 𝑣 and 𝑠 (𝑒) = 𝑤 . We say 𝑣 is the range of 𝑒 and𝑤 is the source of 𝑒 . We also say 𝑣

receives an arrow 𝑒 from𝑤 .

If 𝑒 ∈ 𝐸1

satisfies 𝑟 (𝑒) = 𝑠 (𝑒). Then we say 𝑒 is a loop.
A path is a word of edges 𝑒

1
𝑒

2
. . . 𝑒𝑛 where 𝑠 (𝑒𝑖) = 𝑟 (𝑒𝑖+1). The length of a path is the length of the word.

We write 𝐸
𝑖
for the set of paths of length 𝑖 . Clearly, we may view vertices as length-zero paths and edges as

length-one paths.

A cycle is a path 𝑒
1
. . . 𝑒𝑛 such that 𝑟 (𝑒

1
) = 𝑠 (𝑒𝑛).

Example 12.2. Consider the graph 𝐸𝑛 with a unique vertice and 𝑛 edges (so each of them must be a loop at the

unique vertice). The corresponding graph C
∗
-algebra is the Cuntz algebra O𝑛 .

•

Figure 12.1: The graph 𝐸
4
.

Definition 12.3. Let 𝐸 be a graph with 𝐸
0

= {𝑣
1
, . . . , 𝑣𝑛}. The adjacency matrix 𝐴𝐸 is defined as the 𝑛×𝑛-matrix

whose (𝑖, 𝑗)-entry is

(𝐴𝐸)𝑖, 𝑗 := #{𝑒 ∈ 𝐸1 | 𝑠 (𝑒) = 𝑒 𝑗 , 𝑟 (𝑒) = 𝑒𝑖}.
Definition 12.4. Let 𝐸 be a row-finite graph. That is, every vertice receives finite many edges. A Cuntz–

Krieger 𝐸-family consists of two subsets

𝑆 := {𝑆𝑒 | 𝑒 ∈ 𝐸1}, 𝑃 := {𝑃𝑣 | 𝑣 ∈ 𝐸0}

in a C
∗
-algebra𝐴, such that every 𝑆𝑒 is a partial isometry and every 𝑃𝑣 is a projection, and satisfy the following

Cuntz–Krieger relations:
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(CK1) 𝑆
∗
𝑒𝑆𝑒 = 𝑃𝑠 (𝑒 ) .

(CK2)
∑

𝑟 (𝑒 )=𝑣 𝑆𝑒𝑆
∗
𝑒 = 𝑃𝑣 .

We write C
∗(𝑆, 𝑃) for the C

∗
-algebra generated by 𝑆 and 𝑃 ; let us call it the Cuntz–Krieger algebra.

Proposition 12.5. Let 𝐸 be a row-finite graph. Let {𝑆, 𝑃} be a Cuntz–Krieger 𝐸-family. Then

• {𝑆𝑒𝑆∗𝑒 | 𝑒 ∈ 𝐸1} are mutally orthogonal.

• 𝑆
∗
𝑒𝑆 𝑓 ≠ 0 iff 𝑒 = 𝑓 .

• If 𝑆𝑒𝑆 𝑓 ≠ 0, then 𝑠 (𝑒) = 𝑟 (𝑓 ).
• If 𝑆𝑒𝑆

∗
𝑓 ≠ 0, then 𝑠 (𝑒) = 𝑠 (𝑓 ).

Corollary 12.6. If {𝑆, 𝑃} is a Cuntz–Krieger 𝐸-family. Then

C
∗(𝑆, 𝑃) = span

{
𝑆𝜇𝑆
∗
𝜈

����� 𝜇, 𝜈 ∈ ∞⋃
𝑖=0

𝐸
𝑖

}
,

where
𝑆𝜇 := 𝑆𝑒

1

. . . 𝑆𝑒𝑛 where 𝜇 = 𝑒
1
. . . 𝑒𝑛 .

Example 12.7. Consider the graph as in Figure 12.2. The Cuntz–Krieger relations are

𝑃𝑣 + 𝑃𝑤 = id, 𝑆
∗
𝑒𝑆𝑒 = 𝑃𝑣, 𝑆

∗
𝑓 𝑆 𝑓 = 𝑃𝑣

𝑆 𝑓 𝑆
∗
𝑓 = 𝑃𝑤, 𝑆𝑒𝑆 𝑓 = 𝑆

∗
𝑒𝑆 𝑓 = 0.

Wemay choose any representation of the generators: different representations yield isomorphic Cuntz–Krieger

algebras, which are all isomorphic to the Toeplitz algebra T . In fact, using the Cuntz–Krieger relations one

can check that 𝑇 := 𝑆𝑒 + 𝑆 𝑓 is an isometry, and

𝑃𝑣 = 𝑇𝑇
∗
, 𝑃𝑤 = id−𝑇𝑇 ∗, 𝑆𝑒 = 𝑇𝑃𝑒 , 𝑆 𝑓 = 𝑇𝑃𝑓 .

Therefore, C
∗(𝑆, 𝑃) is the universal C

∗
-algebra generated by an isometry, which is just the Toeplitz algebra by

Coburn’s Theorem.

𝑣 𝑤𝑒
𝑓

Figure 12.2: A graph: its graph C
∗
-algebra and Cuntz–Krieger algebras are all T .

Proposition 12.8. Let 𝐸 be a row-finite graph. There exists a universal Cuntz–Krieger algebra generated by
a Cuntz–Krieger 𝐸-family {𝑆, 𝑃}: that is, for any other Cuntz–Krieger algebra which is generated by another
Cuntz–Krieger 𝐸-family {𝑇,𝑄}, there exists a ∗-homomorphism 𝜋 with

𝜋 (𝑆𝑒) = 𝑇𝑒 , 𝜋 (𝑃𝑣) = 𝑄𝑣, for all 𝑒 ∈ 𝐸1 and 𝑣 ∈ 𝐸0.

Definition 12.9. The universal C
∗
-algebra C

∗(𝐸) defined in the previous proposition is called the graph
C
∗-algebra of the graph 𝐸.

Theorem 12.10 (Gauge-invariant uniqueness theorem). Let 𝐸 be a row-finite graph and {𝑆, 𝑃} is a Cuntz–
Krieger 𝐸-family in a C

∗-algebra 𝐵, such that 𝑄𝑣 ≠ 0 for all 𝑣 ∈ 𝐸0. If there exists a continuous action 𝛽 : T→
Aut(𝐵) such that

𝛽𝑧 (𝑆𝑒) = 𝑧𝑆𝑒 , 𝛽𝑧 (𝑃𝑣) = 𝑃𝑣

for all 𝑒 and 𝑣 . Then C
∗(𝐸) � C

∗(𝑆, 𝑃).
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Sketch of the proof. • C
∗(𝐸) carries a canonical gauge action 𝛾 : T→ Aut(C∗(𝐸)).

• Let

Φ : C
∗(𝐸) → C

∗(𝐸), 𝑎 ↦→
∫

T
𝛾𝑧 (𝑎) d𝑧.

Then the image of Φ is the 𝛾-fixed point algebra

C
∗(𝐸)𝛾 := {𝑎 ∈ C

∗(𝐸) | 𝛾𝑧 (𝑎) = 𝑎 for all 𝑧 ∈ T}.

Moreover, Φ is contractive and faithful (i.e. Φ(𝑎∗𝑎) = 0 iff 𝑎 = 0).

• A lemma:

Lemma 12.11. The map 𝜋 : C
∗(𝐸) → C

∗(𝑆, 𝑃) is injective on C
∗(𝐸)𝛾 .

• Clearly 𝜋 : C
∗(𝐸) → C

∗(𝑆, 𝑃) is surjective. Notice that

∥𝜋 (Φ(𝑎))∥ ≤
∫

T
∥𝜋 (𝛾𝑧 (𝑎))∥ d𝑧 =

∫
T
∥𝛽𝑧 (𝜋 (𝑎))∥ d𝑧 = ∥𝜋 (𝑎)∥.

If 𝜋 (𝑎) = 0. Then 𝜋 (𝑎∗𝑎) = 0. So 𝜋 (Φ(𝑎∗𝑎)) = 0. But Φ(𝑎∗𝑎) ∈ C
∗(𝐸)𝛾 and 𝜋 is injective on it, we

have Φ(𝑎∗𝑎) = 0. Then 𝑎 = 0. So 𝜋 is injective on the whole of C
∗(𝐸), which implies that 𝜋 : C

∗(𝐸) →
C
∗(𝑆, 𝑃) is an isomorphism. □

Theorem 12.12 (Cuntz–Krieger uniqueness theorem). Let 𝐸 be a row-finite graph such that every cycle has an
entry. (That is, given any cycle 𝑒

1
. . . 𝑒𝑛 , there exists an edge 𝑒 with 𝑒 ≠ 𝑒𝑖 for all 𝑖 = 1, . . . 𝑛, and that 𝑟 (𝑒) = 𝑟 (𝑒𝑖)

for some 𝑒𝑖 ). Then the Cuntz–Krieger algebra C
∗(𝑆, 𝑃) generated by any Cuntz–Krieger 𝐸-family {𝑆, 𝑃} is

isomorphic to the graph C
∗-algebra C

∗(𝐸).

12.2 K-theory of graph C∗-algebras

Graph C
∗
-algebras have many projections which represent classes in K

0
. Due to the Cuntz–Krieger relations,

these classes also satisfy certain relations, allowing us to compute the K-theory. Recall that two projections 𝑝

and 𝑞 represent the same class if 𝑝 = 𝑢
∗
𝑢 and 𝑞 = 𝑢𝑢

∗
. Using (CK2):

[𝑃𝑣] =


∑︁
𝑟 (𝑒 )=𝑣

𝑆𝑒𝑆
∗
𝑒

 =
∑︁

𝑟 (𝑒 )=𝑣
[𝑆∗𝑒𝑆𝑒] =

∑︁
𝑟 (𝑒 )=𝑣

[𝑃𝑠 (𝑒 ) ] =
∑︁
𝑤∈𝐸0

𝐴𝐸 (𝑣,𝑤) [𝑃𝑤] .

We will prove the following main theorem:

Theorem 12.13. Let 𝐸 be a row-finite graph without sources. (That is, for any 𝑣 ∈ 𝐸
0, there exists 𝑒 ∈ 𝐸

1

with 𝑟 (𝑒) = 𝑣). Then

K
0
(C∗(𝐸)) � coker(1 −𝐴t

𝐸), K
1
(C∗(𝐸)) � ker(1 −𝐴t

𝐸) .

Here we view the adjacency matrix 𝐴𝐸 as a linear map Z |𝐸
0 | → Z |𝐸

0 | .

Example 12.14. Consider the graph 𝐸𝑛 as in Example 12.2. The graph C
∗
-algebra is the Cuntz algebra O𝑛 .

Applying the theorem we have:

K
0
(O𝑛) = coker(1 − 𝑛) = Z/(𝑛 − 1), K

1
(O𝑛) = ker(1 − 𝑛) = 0.

The proof of the theorem is based on the dual Pimsner–Voiculescu sequence, and the K-theory of AF-

algebras.
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12.2.1 Dual Pimsner–Voiculescu sequence

Recall that an AF-algebra is the direct limit of an increasing sequence of finite-dimensional C
∗
-algebras

𝐴 =
⋃∞

𝑖=1
𝐴𝑛 . Any finite-dimensional C

∗
-algebra is the direct sum of some finite-dimensional matrix algebras⊕𝑛

𝑖=1
M𝑑𝑖
(C). Since K𝑖 ’s are covariant functors which preserves direct sums and direct limits. We have

K
0
(𝐴) = lim

𝑛
Z

∑
𝑖 𝑑𝑖

, K
1
(𝐴) = 0.

Recall the definition of crossed products:

Definition 12.15. A crossed product for a C
∗
-dynamical system (𝐴,𝐺, 𝛼) is a C

∗
-algebra 𝐴 ⋊𝛼 𝐺 together

with
∗
-homomorphisms

𝑖𝐴 : 𝐴→M(𝐴 ⋊𝛼 𝐺), 𝑖𝐺 : 𝐺 →UM(𝐴 ⋊𝛼 𝐺),

characterised uniquely by the following properties:

• 𝑖𝐴 (𝛼𝑠 (𝑎)) = 𝑖𝐺 (𝑠)𝑖𝐴 (𝑎)𝑖𝐺 (𝑠)∗ for all 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝐺 .
• Universality. If (𝜋,𝑈 ) is a covariant representation of (𝐴,𝐺, 𝛼) on a Hilbert spaceH . Then there exists

a
∗
-homomorphism 𝜋 ⋊𝑈 : M(𝐴 ⋊𝛼 𝐺) → B(H) such that

𝜋 ⋊𝑈 ◦ 𝑖𝐴 = 𝜋, 𝜋 ⋊𝑈 ◦ 𝑖𝐺 = 𝑈 .

• The linear span

span{𝑖𝐴 (𝑎)𝑖𝐺 (𝑧) | 𝑧 ∈ C
c
(𝐺)},

is closed in 𝐴 ⋊𝛼 𝐺 . where

𝑖𝐺 (𝑧) :=

∫
𝐺

𝑧 (𝑠)𝑖𝐺 (𝑠) d𝑧.

Let (𝐴,𝐺, 𝛼) be a C
∗
-dynamical system with 𝐺 abelian. There is a dual action 𝛼 of 𝐺 on 𝐴 ⋊𝛼 𝐺 by

𝛼𝛾 (𝑖𝐴 (𝑎)) := 𝑖𝐴 (𝑎), 𝛼𝛾 (𝑖𝐺 (𝑧)) := 𝑖𝐺 (𝛾 (𝑧)) .

Theorem 12.16 (Takai duality). Let (𝐴,𝐺, 𝛼) be a C
∗-dynamical system with 𝐺 abelian. Then

(𝐴 ⋊𝛼 𝐺) ⋊𝛼 𝐺 � 𝐴 ⊗ K(𝐿2(𝐺)) .

Apply Pimsner–Voiculescu sequence to the C
∗
-algebra C

∗(𝐸) ⋊𝛾 T with the Z-action 𝛾 , and identify

K𝑖 ((C∗(𝐸) ⋊𝛾 T) ⋊
𝛾
−1 Z) � K𝑖 ((C∗(𝐸) ⋊𝛾 T) ⋊𝛾 Z) � K𝑖 (C∗(𝐸) ⊗ K(𝐿2(𝐺))) � K𝑖 (C∗(𝐸))6,

we obtain the following dual Pimsner–Voiculescu sequence:

K
0
(C∗(𝐸) ⋊𝛾 T) K

0
(C∗(𝐸) ⋊𝛾 T) K

0
(C∗(𝐸))

K
1
(C∗(𝐸)) K

1
(C∗(𝐸) ⋊𝛾 T) K

1
(C∗(𝐸) ⋊𝛾 T),

id −𝛾−1

∗

id −𝛾−1

∗

where 𝛾 is the dual action of the gauge action and 𝛾∗ is the induced map in K-theory.

6

Here we use the fact that 𝐴 ⋊𝛼 𝐺 � 𝐴 ⋊
𝛼
−1 𝐺 . This is because a 𝐺-action 𝛼 on 𝐴 is equivalent to a 𝐺

op

-action 𝛼
−1

on 𝐴;

but 𝐺
op � 𝐺 .
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12.2.2 Construction of the graph 𝑬 ⋊1 Z

Our next goal is construct another graph 𝐸 ⋊
1

Z such that:

The graph C
∗
-algebra C

∗(𝐸 ⋊
1

Z) is AF and isomorphic to the crossed product C
∗(𝐸) ⋊𝛾 T.

As such is achieved, since AF-algebras have trivial K
1
, the cyclic sequence breaks down to

0→ K
1
(C∗(𝐸)) → K

0
(C∗(𝐸) ⋊𝛼 T)

id −𝛾−1

∗−−−−−→ K
0
(C∗(𝐸) ⋊𝛼 T) → K

0
(C∗(𝐸)) → 0

So

K
0
(C∗(𝐸)) � coker(id−𝛾−1

∗ ), K
1
(C∗(𝐸)) � ker(id−𝛾−1

∗ ) .

Then we may identify 𝛾 with 𝐴
t

𝐸 to conclude the main Theorem 12.13.

Definition 12.17. Define the graph 𝐸 ⋊
1

Z by

• (𝐸 ⋊
1

Z)𝑖 := 𝐸
𝑖 × Z.

• 𝑟 (𝑒, 𝑛) := (𝑟 (𝑒), 𝑛 − 1).
• 𝑠 (𝑒, 𝑛) := (𝑠 (𝑒), 𝑛).

See Figure 12.3 for an example.

...
...

𝑣 𝑤 (𝑣, 1) (𝑤, 1)

(𝑣, 0) (𝑤, 0)

Figure 12.3: An example of 𝐸 and 𝐸 ⋊
1

Z.

Remark 12.18. • It is easy to show that there are no cycles in 𝐸 ⋊
1

Z.

• 𝐸 ⋊
1

Z carries an action of Z:
𝛽𝑚 (𝑒, 𝑛) = (𝑒, 𝑛 +𝑚).

This induces an action

𝛽 :
ˆT = Z→ Aut(C∗(𝐸 ⋊

1
Z)) .

Lemma 12.19. There is an isomorphism 𝜙 : C
∗(𝐸 ⋊

1
Z) �−→ C

∗(𝐸) ⋊𝛾 T intertwining 𝛽 and 𝛾 .

Proof of Lemma 12.19. Define a Cuntz–Krieger (𝐸 ⋊
1

Z)-family {𝑇,𝑄} in C
∗(𝐸) ⋊𝛾 T by

𝑇(𝑒,𝑛) := 𝑖
C
∗ (𝐸 ) (𝑆𝑒)𝑖T(𝑓𝑛), 𝑄 (𝑣,𝑛) := 𝑖

C
∗ (𝐸 ) (𝑃𝑣)𝑖T(𝑓𝑛),

where 𝑓𝑛 ∈ C(T) is the function 𝑧 ↦→ 𝑧
𝑛
. By universal property of the graph C

∗
-algebra C

∗(𝐸 ⋊
1

Z), there
is a

∗
-homomorphism 𝜙 : C

∗(𝐸 ⋊
1

Z) → C
∗(𝐸) ⋊𝛾 T, whose image is the Cuntz–Pimsner algebra generated

by {𝑇,𝑄}. Since 𝐸⋊
1
Z has no cycle. By Cuntz–Krieger uniqueness theorem 12.12, the map 𝜙 is an isomorphism

onto its image. But notice that 𝑓𝑛 is dense in C(T). Therefore 𝑖
C
∗ (𝐸 ) (𝑎)𝑖T(𝑓𝑛) spans a dense subset of C

∗(𝐸)⋊𝛾 T.

Hence 𝜙 : C
∗(𝐸 ⋊

1
Z) �−→ C

∗(𝐸) ⋊𝛾 T is an isomorphism. □
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Proof of Main Theorem 12.13. Let 𝐹𝑛 be the subgraph of 𝐸 ⋊
1

Z with

𝐹
0

𝑛 := {(𝑣, 𝑘) ∈ (𝐸 ⋊
1

Z)0 | 𝑘 ≤ 𝑛}, 𝐹
1

𝑛 := {(𝑣, 𝑘) ∈ (𝐸 ⋊
1

Z)1 | 𝑘 ≤ 𝑛}.

Then C
∗(𝐹𝑛) is finite. In particular, K

0
(C∗(𝐹𝑛)) is the free abelian group Z |𝐹

0

𝑛 |
generated by 𝑃 (𝑣,𝑛) (c.f. [23,

Lemma 7.13]). The graph C
∗
-algebra C

∗(𝐸 ⋊
1

Z) is the direct limit of C
∗(𝐹𝑘 ), hence AF.

It remains to identify 𝛾
−1

∗ , or equivalently 𝛽
−1

(by Lemma 12.19), with 𝐴
t

𝐸 . Using the Cuntz–Krieger

relations, we have

𝛽
−1 [𝑃 (𝑣,𝑛) ] = [𝑃 (𝑣,𝑛−1) ] =


∑︁

𝑟 (𝑒,𝑘 )=(𝑣,𝑛−1)
𝑆 (𝑒,𝑘 )𝑆

∗
(𝑒,𝑘 )


=

∑︁
𝑟 (𝑒 )=𝑣

[
𝑆 (𝑒,𝑛)𝑆

∗
(𝑒,𝑛)

]
=

∑︁
𝑟 (𝑒 )=𝑣

[
𝑆
∗
(𝑒,𝑛)𝑆 (𝑒,𝑛)

]
=

∑︁
𝑟 (𝑒 )=𝑣

[𝑃 (𝑒,𝑛) ]

=
∑︁
𝑤∈𝐸0

𝐴𝐸 (𝑣,𝑤) [𝑃 (𝑤,𝑛) ] . □

June 22, 2022

K-theory of Cuntz–Pimsner algebras
Speaker: Francesca Arici (Leiden University)

References and historical remark:

• In [7]. Cuntz defined the well-known Cuntz algebras O𝑛 .
• In [10], Cuntz and Krieger defined graph C

∗
-algebras. Cuntz algebras are special cases of them.

• In [22], Pimsner constructed two C
∗
-algebras T𝐸 and O𝐸 from an injective C

∗
-correspondence (𝐸, 𝜙).

The C
∗
-algebra O𝐸 , called the Cuntz–Pimsner algebra of (𝐸, 𝜙), generalises both Cuntz–Krieger algebras

and crossed product by Z.

The Cuntz–Pimsner algebras have the following properties:

• Similar to crossed products by Z: the Cuntz–Pimsner algebras have a long exact sequence in KK-theory

generalising the Pimsner–Voiculescu exact sequence.

• Similar to graph C
∗
-algebras: in nice cases, the Cuntz–Pimsner algebras are also universal and carry a

gauge action.

13.1 Toeplitz–Pimsner algebras

Let (𝐸, 𝜙) be a injective C
∗
-correspondence over 𝐴. That is, 𝐸 is a Hilbert 𝐴-module and 𝜙 : 𝐴→ B𝐴 (𝐸) is a

non-degenerate injective
∗
-homomorphism. For today, we also assume that im𝜙 ⊆ K𝐴 (𝐸). Then (𝐸, 𝜙) defines

a Kasparov (𝐴,𝐴)-module.

Definition 13.1. Let

𝐸
(0)

:= 𝐴, 𝐸
(𝑘 )

:= 𝐸 ⊗𝜙 𝐸 ⊗𝜙 · · · ⊗𝜙 𝐸︸                  ︷︷                  ︸
𝑘 copies of 𝐸

, for all 𝑘 > 0.
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The Fock correspondence is the C
∗
-correspondence (𝐸+, 𝜙+) over 𝐴, where

𝐸+ :=
⊕
𝑘∈N

𝐸
(𝑘 )

, 𝜙+(𝑎) (𝜉1
⊗ · · · ⊗ 𝜉𝑛) := 𝜙 (𝑎)𝜉

1
⊗ · · · 𝜉𝑛 .

Using the Fock correspondence, we can construct an explicit representation of the C
∗
-algebra T𝐸 .

Definition 13.2. Let 𝜉 ∈ 𝐸. The Toeplitz operator (or shift operator, or creation operator) associated to 𝜉 , is the

bounded operator 𝑇𝜉 on 𝐸+, defined by

𝑇𝜉 (𝜂1
⊗ · · · ⊗ 𝜂𝑛) := 𝜉 ⊗ 𝜂

1
⊗ · · · ⊗ 𝜂𝑛 .

Remark 13.3. • 𝑇𝜉 sends 𝐸
(𝑘 )

to 𝐸
(𝑘+1)

.

• 𝑇𝜉 is adjointable:

𝑇
∗
𝜉 (𝜂1

⊗ 𝜂
2
⊗ · · · ⊗ 𝜂𝑛) := 𝜙 (⟨𝜉, 𝜂

1
⟩)𝜂

2
⊗ · · · ⊗ 𝜂𝑛 .

In particular, 𝑇
∗
𝜉 (𝑎) = 0 for all 𝑎 ∈ 𝐴.

Definition 13.4. The Toeplitz–Pimsner algebra of (𝐸, 𝜙), denoted by T𝐸 , is the smallest C
∗
-algebra of B𝐴 (𝐸+)

containing 𝑇𝜉 for all 𝜉 ∈ 𝐸.

Theorem 13.5. The Toeplitz–Pimnser algebra T𝐸 is universal in the following sense:
If (𝐸, 𝜙) is full over 𝐴, i.e. ⟨𝐸, 𝐸⟩ = 𝐴. Let 𝐶 be a C

∗-algebra and𝜓 : 𝐴→ 𝐶 be a ∗-homomorphism. If there
exists 𝑡𝜉 ∈ 𝐶 for all 𝜉 ∈ 𝐸, such that

𝛼𝑡𝜉 + 𝑡𝜂 = 𝑡𝛼𝜉+𝜂, 𝑡𝜉𝜓 (𝑎) = 𝑡𝜉𝑎, 𝜓 (𝑎)𝑡𝜉 = 𝑡𝜓 (𝑎)𝜉, 𝑡
∗
𝜉 𝑡𝜂 = 𝜓 (⟨𝜉, 𝜂⟩),

for all 𝛼 ∈ C, 𝜉, 𝜂 ∈ 𝐸.
Then𝜓 factor through ˜𝜓 : T𝐸 → 𝐶 sending 𝑇𝜉 to 𝑡𝜉 .

13.2 Cuntz–Pimsner algebras

Lemma 13.6. If im𝜙 ⊆ K𝐴 (𝐸+). Then K𝐴 (𝐸+) ⊆ T𝐸 .

Definition 13.7. The Cuntz–Pimsner algebra of a C
∗
-correspondence (𝐸, 𝜙) is the quotient O𝐸 given by the

Cuntz–Pimsner extension

K𝐴 (𝐸+)↣ T𝐸 ↠ O𝐸 .

Example 13.8. Let 𝐴 = C, 𝐸 = C and 𝜙 is the multiplication. Then𝑇 := 𝑇
1
is the unilateral shift on ℓ

2(N):𝑇𝑒𝑛 =

𝑒𝑛+1. The Cuntz–Pimsner extension becomes the well-known Toeplitz extension:

K(ℓ2(N))↣ T ↠ C(T) .

This extension is semi-split. The cpc-section is given by the Hardy projection ℓ
2(Z) → ℓ

2(N).
Example 13.9. Let𝐴 = C, 𝐸 = C𝑛

and 𝜙 is the multiplication. Then T𝐸 is the C
∗
-algebra C

∗(𝑉
1
, . . . ,𝑉𝑛) generated

by 𝑛 isometries 𝑉
1
, . . . ,𝑉𝑛 satisfying

∑
𝑖 𝑉𝑖𝑉

∗
𝑖 ≤ 1 and

∑
𝑖 𝑉𝑖𝑉

∗
𝑖 ≠ 1. The Cuntz–Pimsner extension becomes

K↣ C
∗(𝑉

1
, . . . ,𝑉𝑛) ↠ O𝑛,

where O𝑛 is the Cuntz algebra.

Example 13.10. More generally, let 𝐸 be a finitely-generated projective module over 𝐴. Then there exists a

frame {𝜂𝑖}𝑛𝑖=1
such that

𝜙 (𝑎)𝜂 𝑗 =

𝑛∑︁
𝑖=1

𝜂𝑖 ⟨𝜂𝑖 , 𝜙 (𝑎)𝜂 𝑗 ⟩.

The Cuntz–Pimsner algebra O𝐸 is the C
∗
-algebra generated by𝐴 together with 𝑛 operators 𝑆

1
, . . . , 𝑆𝑛 satisfying

𝑆
∗
𝑖 𝑆 𝑗 = ⟨𝜂𝑖 , 𝜂 𝑗 ⟩,

𝑛∑︁
𝑖=1

𝑆𝑖𝑆
∗
𝑖 = 1, 𝑎𝑆 𝑗 =

𝑛∑︁
𝑖=1

⟨𝜂𝑖 , 𝜂 𝑗 ⟩.

As a special case, for C𝑛
with the standard orthonormal basis one recovers the Cuntz algebra O𝑛 .
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Example 13.11. Let 𝐴 be a C
∗
-algebra, viewed as a Hilbert 𝐴-module. Let 𝛼 : 𝐴 → 𝐴 be an automorphism.

Then (𝐴, 𝛼) is a C
∗
-correspondence over 𝐴. The Cuntz–Pimsner algebra O𝐸 is the crossed product C

∗
-

algebra 𝐴 ⋊𝛼 Z. The Toeplitz–Pimsner algebra T𝐸 in this case is usually denoted by T (𝐴, 𝛼). We shall see

that T (𝐴, 𝛼) is KK-equivalent to 𝐴.

Theorem 13.12. The Cuntz–Pimsner algebra O𝐸 is universal in the following sense:
If (𝐸, 𝜙) is full over 𝐴, i.e. ⟨𝐸, 𝐸⟩ = 𝐴. Let 𝐶 be a C

∗-algebra and𝜓 : 𝐴→ 𝐶 be a ∗-homomorphism. If there
exists 𝑡𝜉 ∈ 𝐶 for all 𝜉 ∈ 𝐸, such that

𝛼𝑡𝜉 + 𝑡𝜂 = 𝑡𝛼𝜉+𝜂, 𝑡𝜉𝜓 (𝑎) = 𝑡𝜉𝑎, 𝜓 (𝑎)𝑡𝜉 = 𝑡𝜓 (𝑎)𝜉, 𝑡
∗
𝜉 𝑡𝜂 = 𝜓 (⟨𝜉, 𝜂⟩), 𝜓

(1)
𝜙 (𝑎) = 𝜓 (𝑎),

for all 𝛼 ∈ C, 𝜉, 𝜂 ∈ 𝐸. Here 𝜙 (1) is defined as the map

𝜓
(1)

: 𝐴 � 𝐸 ⊗ 𝐸∗ → K𝐴 (𝐸), 𝜉 ⊗ 𝜂∗ ↦→ 𝑇𝜉𝑇
∗
𝜂 .

Then𝜓 factor through ˜𝜓 : O𝐸 → 𝐶 sending 𝑇𝜉 to 𝑡𝜉 .

13.3 Pimsner–Voiculescu exact sequence

Let

K𝐴 (𝐸+)↣ T𝐸 ↠ O𝐸
be a Cuntz–Pimsner extension. Additionally, we require that

• im𝜙 ⊆ K𝐴 (𝐸).
• (𝐸, 𝜙) is full. This implies that (𝐸+, 𝜙+) is also full.

Then K𝐴 (𝐸+) is Morita equivalent to 𝐴. The equivalence is implemented by 𝐸+. Hence [𝐸+] defines an element

in KK(K(𝐸+), 𝐴) = KK(𝐴,𝐴).

Theorem 13.13 (Pimsner). The inclusion map 𝑖 : 𝐴 ↩→ T𝐸 gives a KK-equivalence [𝑖] ∈ KK(𝐴,T𝐸).

Theorem 13.14. The following diagram commutes in the Kasparov category:

K(𝐸+) T𝐸 O𝐸

𝐴 𝐴 O𝐸 .

[𝐸+ ] [𝑖 ]−1

1−[𝐸 ]

Corollary 13.15. There is a long exact sequence in K-theory:

K
0
(𝐴) K

0
(𝐴) K

0
(O𝐸)

K
1
(O𝐸) K

1
(𝐴) K

1
(𝐴),

1−𝐸∗ 𝜄∗

𝜄∗ 1−𝐸∗

where 𝜄∗ is the map in K-theory in induced by the inclusion 𝜄 : 𝐴 ↩→ O𝐸 , and 𝐸∗ is the map in K-theory induced by
the C

∗-correspondence (𝐸, 𝜙) .
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