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Notations and symbols

Throughout the notes, we use caligraphic letters G,H,K,L to denote groupoids. The unit space of a
groupoid G is denoted by G(0). We sometimes use G

r
⇒
s
G(0) to denote a groupoid, highlighting the unit

space. The range and source maps r and s are omitted when there is no ambiguity.
Let G be a (topological) groupoid and let X be a left G-set (G-space). The moment maps (a.k.a.

anchor maps) of X is denoted by rX or r. We use G ∗X to denote the set

{(γ, x) ∈ G ×X | s(γ) = r(x)}.

Right G-spaces are defined likewise.
A groupoid correspondence (Section 4) is given by two groupoids G, H and a left G-, right H-space Z

satisfying certain conditions. We denote it by G r←− Z s−→ H.
Let E be a Hilbert A-module. The C*-algebra of compact operators is denoted by KA(E) or KA(E).

We also use K to denote the C*-algebra of compact operators on a(ny) separable Hilbert space.
Let X be a topological space. We use Cb(X),Cc(X) and C0(X) to denote the algebra of bounded

functions, compactly supported functions, and functions vanishing at infinity.
In some lectures, some preliminaries on K-theory or graph C*-algebras are likely required. Relevant

materials could be found in, e.g. the notes [NL22] generated in the Leiden NCG Seminar in 2022 Spring
Semester.

1

mailto:y.ge@math.leidenuniv.nl
mailto:y.li@math.leidenuniv.nl
mailto:y.li@math.leidenuniv.nl


Contents

1 Groupoids: motivations, definitions and examples 4
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 What is a groupoid? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Why do we study groupoids? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Topological groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Haar systems and groupoid C*-algebras 10
2.1 Haar systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Groupoid C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Groupoid actions and equivalence actions 15
3.1 Groupoid actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Mackey–Glimm–Ramsey dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Equivalence of groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Groupoid correspondences 18
4.1 Groupoid correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Composition of correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Morita equivalences revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 From groupoid correspondences to C*-correspondences . . . . . . . . . . . . . . . . . . . . 21

5 Morita equivalence of groupoids and their C*-algebras 22
5.1 Morita equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Kronecker flow of irrational angle ϑ . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Brown–Green–Rieffel theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Equivalence theorem of groupoid C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 Linking algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Linking groupoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Morita equivalence of Fell bundles 27
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Fell bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Equivalence of Fell bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Purely-infinite C*-algebras from dynamical systems 30

8 Induced representations of groupoids 31
8.1 Induced representations finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Unitary representations of groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Induced representations of locally compact groups . . . . . . . . . . . . . . . . . . . . . . 33
8.4 Induced representations of Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.4.1 Direct sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4.3 Induction in stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.5 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5.1 Locally closed orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5.2 Regular representations and the reduced C*-norm . . . . . . . . . . . . . . . . . . 35
8.5.3 Induction from groupoids with closed orbits . . . . . . . . . . . . . . . . . . . . . . 36

2



8.5.4 Amenable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Existence and uniqueness of Haar systems 37
9.1 Existence of Haar systems on second-countable groupoids . . . . . . . . . . . . . . . . . . 38
9.2 Haar systems on equivalent groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Inverse semigroups and groupoids 41
10.1 Representation of covariant systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.2 Étale groupoid C*-algebras as inverse semigroup crossed products . . . . . . . . . . . . . 43

11 Tangent groupoids and index theory 43
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.1.1 What is index theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.1.2 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.1.3 Tangent groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11.2 The index theorem in tangent groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.2.1 The analytic index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.2.2 The topological index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.2.3 Proof of the index theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12 Groupoids of iterated function systems 50
12.1 Iterated function systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.2 C*-algebras of iterated function systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

12.2.1 Topological graph method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.2.2 Topological quiver method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.2.3 Cuntz–Pimsner algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13 Graph groupoids and Doplicher–Roberts algebras 54
13.1 Graph groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.1.1 Graph groupoid C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.2 Doplicher–Roberts algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

13.2.1 K-theory of Doplicher–Roberts algebras . . . . . . . . . . . . . . . . . . . . . . . . 58

References 59

3



September 20, 2022

Groupoids: motivations, definitions and examples
Speaker: Yuezhao Li (Leiden University)

1.1 Motivations

Figure 1.1: What is a groupoid?

1.1.1 What is a groupoid?

There are at least two answers. One way is to think of a groupoid as a generalised group, whose
multiplication is only partially defined. Another is to view a groupoid as a group with more than one
units. For the second viewpoint, recall that a group can be understood as a category with only one object,
and all of its arrows are invertible. Then the group elements correspond to the arrows, and the product
of group elements correspond to the composition of arrows. A groupoid, on the other hand, has a set of
objects and arrows, each object corresponding to a unit by identifying this object with the identity arrow
associated to it.

• x y zh

g
−1

h
−1

g

h
−1

g
−1

h
−1

h

g
−1

g
hg

idz

Figure 1.2: A group is a category with one object and all arrows are invertible. A groupoid is a small
category whose all arrows are invertible.

Our main reference [Wil19] adopts the first viewpoint, but I feel that the second is more concise, and even more useful
in many cases, too. The source and range maps s and r have explicit geometric meanings in the second picture. This is not
only for convenience, but also crucial while working with Lie groupoids: in the Lie groupoid the source and range maps are
required to be surjective submersions, and the unit space is required to be a smooth manifold. I also do not quite agree with
[Wil19, Remark 1.7] where the author calls the categorical viewpoint an abstract nonsence: this seems to be a misuse of
the word. An abstract nonsense is a formal proof based on techniques from category theory, usually not specific to a fixed
context. So I would say an abstract nonsense is a method, and a definition cannot be an abstract nonsense. — Commented
by Y. Li
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1.1.2 Why do we study groupoids?

Before going into the details, it is worthwhile to explain why we care about groupoids. A short answer is
that groupoids interact strongly with other fields like dynamical systems and differential geometry, and
they themselves are also vital as geometric models of noncommutative spaces.

Dynamical systems and groupoids. Starting from a dynamical system, you can usually construct a
groupoid. Depending on the type of the dynamical system (measurable, topological, smooth, ...) you have
different structures of the groupoid (Borel, topological, Lie, ...). This groupoid tells you the information
of the original dynamical system. For example, let X be a set and G be a group. It is granted that there
is a one-to-one correspondence between

transitive G-actions on X and conjugate classes of subgroups of G.

Now if we work with a Borel group G and a Borel space X. Can we say something about the ergodic
actions of G on X? This shall be more difficult than transitive actions, becase ergodic actions involve
the data of both the group and the space. Then one needs to construct a groupoid G⋉X, the action
groupoid. This is a Borel groupoid, whose Borel structure comes from those of G and X. The answer is
that, an ergodic action of G on X corresponds precisely to an ergodic groupoid.

Dynamics, topological groupoids and groupoid C*-algebras. If we start with a topological
dynamical system, say, a locally-compact topological group G acting on a locally-compact space X.
Then G⋉X is a topological groupoid, and we can construct C*-algebras C∗(G⋉X) and C∗

r (G⋉X),
the full and reduced groupoid C*-algebra of the groupoid G ⋉X. These C*-algebras are isomorphic
to the full and reduced crossed product C*-algebras, and encode a lot of data of the dynamics: for
example, C∗

r (G⋉X) is simple iff the action of G on X is topological free and minimal.

Groupoids and noncommutative spaces. Another important reason to study groupoids is that
they are viewed as geometric models for noncommutative spaces. Recall that a locally-compact Hausdorff
space X corresponds to a commutative C*-algebra C0(X): this is the well-known Gelfand duality. Then
noncommutative C*-algebras play the role of “non-commutative spaces” in the algebraic setting. But
sometimes it is desirable to find geometric models of noncommutative spaces. Of course, they cannot be
the usual topological spaces because C0(X) is always commutative. One attempt is to seek a topological
groupoid G, such that its groupoid C*-algebra is isomorphic to the noncommutative C*-algebra that we
start with. Then G is a good geometric model for our noncommutative space. If we view a topological
space X as a groupoid (see Example 1.15), then its groupoid C*-algebra is precisely C0(X), complying
nicely with the classical Gelfand theory.

Foliation, groupoids and index theory. Index theory studies the connection between indices of
(pseudo)differential operators and the topology or geometry of the spaces they live in. One of the most
celabrated index theorem is the Atiyah–Singer index theorem. The family index theorem is a variant of
the Atiyah–Singer index theorem. The set-up is a fibration E → X over a compact base, and a family of
elliptic operators {Dx}x∈X parametrised by X, and such that each Dx acts on the vertical fibre Ex. The
family index theorem computes the index of the family Index(Dx), which is an element in K0(X), the
K-theory of X.

Fibrations are special cases of foliations, and one might wish to generalise the theory to arbitrary
foliations. However, foliations can be quite well-behaved in general. For example, consider the Kronecker
foliation of T2 ≃ R2/2πZ defined by the differential equation dy

dx = ϑ. If ϑ is rational. Then every orbit
(leaf) is closed and homeomorphic to a circle. However, if ϑ is irrational, then every leaf is dense in T2,
and the leaf space with the quotient topology is homeomorphic to a single point. This makes the family
index theorem useless.

The problem arises because the leaf space is badly-behaved. The solution is to replace this space by a
“noncommutative space” — the foliation groupoid. Thus the K-theory of the C*-algebra of the foliation
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groupoid becomes a nice receptacle of the family index. This is the now well-known longitudinal index
theorem of Connes and Skandalis [CS84].

1.2 Groupoids

Definition 1.1 (First definition of groupoids). A groupoid is a set G together with:

• a set G(2) ⊆ G × G of “composable arrows”;
• a “multiplication map” G(2) → G, (a, b) 7→ ab;
• an “inverse” map G → G, a 7→ a−1,

such that:

1. (Associativity) If (a, b) ∈ G(2) and (b, c) ∈ G(2). Then (ab, c), (a, bc) ∈ G(2) and (ab)c = a(bc).
2. (Involutivity) (a−1)−1 = a.

3. (Unit) For any a ∈ G, (a−1, a) ∈ G(2); if (a, b) ∈ G(2), then abb−1 = a and a−1ab = b.

The unit axiom asserts that, unlike a group, a groupoid can have many (one-sided) units; the units of
a groupoid G forms a subset G(0) ⊆ G, which comes together with a pair of maps s, r : G ⇒ G(0).

Definition 1.2. Let G be a groupoid.

• The unit space G(0) of G is
G(0) := {a ∈ G | a = a−1 = a2}.

• The source map of G is s : G → G(0), a 7→ a−1a.
The range map of G is r : G → G(0), a 7→ aa−1.

We have the following:

Lemma 1.3. Let G be a groupoid.

1. G(0) = {aa−1 | a ∈ G}.

2. G(2) = {(a, b) ∈ G × G | s(a) = r(b)}.

3. If a, b ∈ G and (a, b) ∈ G(2). Then:

s(a) = r(a−1), s(ab) = s(b), r(ab) = r(a),
(b−1, a−1) ∈ G(2), b−1a−1 = (ab)−1.

Proof. • Clearly aa−1 ∈ G(0) for any a ∈ G. If a ∈ G(0), then a = a2 = aa−1.
• If s(a) = r(b), then a−1a = bb−1. Since (a, a−1), (a−1, a), (b−1, b), (b, b−1) ∈ G(2). We have (a, a−1a) =

(a, bb−1) ∈ G(2) and (bb−1, b) ∈ G(2). Then (a, bb−1b) = (a, b) ∈ G2. Conversely, if (a, b) ∈ G(2).
Since (a−1, a), (b, b−1) ∈ G(2), the product a−1abb−1 makes sense, which equals both bb−1 and a−1a.

• The three equations in the first line can be quickly checked. If (a, b) ∈ G(2). Then r(a−1) = s(a) =
r(b) = s(b−1) and hence (b−1, a−1) ∈ G(2). The product b−1a−1ab(ab)−1 makes sense and equals
both b−1a−1 and (ab)−1.

Remark 1.4. The previous lemma states that, a groupoid can equivalently be described by the data (G,G(0), s, r,−1 ).
This leads to an alternative definitions of groupoids.

Definition 1.5 (Second definition of groupoids). A groupoid is a set G together with:
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• a distinguished subset G(0) ⊆ G;
• a pair of maps r, s : G ⇒ G(0);
• a map G2 → G, (a, b) 7→ ab, where

G(2) := {(a, b) ∈ G × G | s(a) = r(b)};

• a map G → G, a 7→ a−1,

such that

1. r(x) = x = s(x) for all x ∈ G(0).
2. r(a)a = a = as(a) for all a ∈ G.
3. r(a−1) = s(a) for all a ∈ G.
4. s(a) = a−1a and r(a) = aa−1 for all a ∈ G.

5. r(ab) = r(a) and s(ab) = s(b) for all (a, b) ∈ G(2).
6. (ab)c = a(bc) whenever s(a) = r(b) and s(b) = r(c).

In this definition, the roles of the range and source maps are highlighted: this is actually more
important if we want to study a topological groupoid or a Lie groupoid. I feel that it is sometimes more
convenient to denote a groupoid by a diagram G

r
⇒
s
G(0).

Example 1.6. 1. A group G is a groupoid G⇒ pt.

2. A set X is a groupoid X
id
⇒
id
X together with the trivial multiplication and inverse maps.

3. Group bundle. A group bundle consists of two sets E,X and a surjective map π : E ↠ X such
that π−1(x) is a group for every x ∈ X. A group bundle can be viewed as a groupoid E

π
⇒
π
X. In

particular: a vector bundle is a groupoid.
4. Action groupoid. Let X be a (left) G-set. That is, G acts on X on the left. The action groupoid G⋉
X ⇒ X is defined as follows. We set G⋉X := G×X as a set and (G⋉X)(0) := X. The source,
range, multiplication and inverse maps are

s(g, x) := x, r(g, x) := g · x, (h, gx)(g, x) := (hg, x), (g, x)−1 := (g−1, gx).

5. Pair groupoid. Let X be a set. The pair groupoid is given by X ×X
pr1
⇒
pr2

X. The multiplication

map is given by (x, y)(y, z) := (x, z) and the inverse map is (x, y)−1 := (y, x).

6. Equivalence relations. Let X be a set andR ⊆ X×X be an equivalence relation on X. ThenR
pr1
⇒
pr2

X

is a groupoid, with multiplication (x, y)(y, z) := (x, z) and inverse (x, y)−1 := (y, x).

• If we set R := X ×X, then we recover the pair groupoid as a special case. If we set R := ∅,
then we recover the groupoid X

id
⇒
id
X.

• Let G be any groupoid. We can define an equivalence relation on G(0) by claiming two
units are equivalent iff they are connected by a groupoid element. Equivalently, this is the
subset R(G) := {(r(a), s(a)) | a ∈ G} ⊆ G(0) × G(0). Thus we obtain a groupoid R(G) ⇒ G(0).
We say a groupoid G is principal if G is isomorphic to R(G) as a groupoid. Equivalently, this
means there exists at least one arrow between two units in G.
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7. Fundamental groupoid. Let X be a topological space and x ∈ X. An important invariant in
algebraic topology is the fundamental group of X (with basepoint x), defined as the group of
(basepoint-fixed homotopy) equivalence classes of loops in X with basepoint x:

π1(X,x) := {Loop γ in X | γ(0) = γ(1) = x}
γ ∼ γ′ iff γ and γ′ are homotopic with basepoint fixed

.

This definition is not completely satisfying due to the following issues. If X is not path-connected,
given x, y ∈ X, π1(X,x) and π1(X, y) may not be isomorphic if x and y do not lie in the same
path component. If X is path-connected, then X has a unique path component and a different
basepoint gives rise to an isomorphic fundamental group. However, the isomorphism between these
two groups depend on the choice of the basepoints and on the specified path connecting them,
hence not canonical.
It is desirable to obtain a mathematical object similar to the fundamental group but does not
depend on the choice of a basepoint. A natural idea is to choose (equivalence classes of) paths
instead of loops. Unlike loops which are based at a certain point, paths are not concatenatable,
unless the starting point of one coincides with the endpoint of another. This is precisely the axiom
of a groupoid. So we may define the fundamental groupoid of X as:

Π1(X) := {Path γ in X}
γ ∼ γ′ iff γ and γ′ are homotopic with basepoints fixed

.

The fundamental groupoid is an important object in algebraic topology.
8. Tangent groupoid. Tangent groupoids were introduced by Alain Connes as an approach to study

index theory. We briefly mention his construction. The interplay between tangent groupoids and
index theory will be discussed in a future talk.
Let M be a smooth manifold. The tangent groupoid of M is the groupoid

TM := TM × {0}
∐

M ×M × (0, 1]
r
⇒
s
M × [0, 1],

where

r(x, v, 0) = (x, 0), s(x, v, 0) = (x, 0);
r(x, y, ϵ) = (x, ϵ), s(x, y, ϵ) = (y, ϵ), ϵ ∈ (0, 1].

Definition 1.7 (Subgroupoids). A subgroupoid of a groupoid is a subset H ⊆ G such that, the
multiplication and inverse maps of G restricted to H turns it into a groupoid.

Definition 1.8 (Groupoid homomorphism). A (strict) groupoid homomorphism f : G → H is a map
such that f × f(G(2)) ⊆ H(2) and f(ab) = f(a)f(b) for all (a, b) ∈ G(2). It is an isomorphism if there
exists another groupoid homomorphism g : H → G such that f ◦ g = idH and g ◦ f = idG .

Remark 1.9. In later talks we shall define another larger class of morphisms between groupoids called
groupoid correspondences. For clarity we will frequently refer to groupoid homomorphisms as strict
homomorphisms.

Definition 1.10. Let G be a groupoid.

• Let x, y ∈ G(0). We define the source fibre at y to be Gy := s−1(y), the range fibre at x to
be Gx := r−1(x), and Gx

y := Gx ∩ Gy.

• Let A,B ⊆ G(0). We define GB := s−1(G), GA := r−1(A) and GA
B := GA ∩ GB.

Definition 1.11. Let G be a groupoid.
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• Let A ⊆ G(0). Then GA
A ⊆ G is a subgroupoid, called the restriction of G to A.

• Let x ∈ G(0). Then Gx
x is a group, called the isotropy group at x.

• The isotropy groupoid is the subgroupoid of G:

Iso(G) :=
⋃

x∈G(0)

Gx
x ⇒ G(0).

1.3 Topological groupoids

Now we turn to groupoids with extra structures. Charles Ehresmann was the first person to endow
groupoids with extra structures while applying them to the study of foliation. Examples include topological
groupoids, Borel groupoids (groupoids with measurable structures) and Lie groupoids.

Topological groupoids are the central objects that we will care about in the seminar talks. Let G be a
groupoid that is also a topological space. Then G(2) ⊆ G × G inherits the product topology of G × G.

Definition 1.12. A groupoid G is a topological groupoid if G is a topological space, and the multiplication
map and the inverse map are continuous.

Remark 1.13. Just as in the case of groups, we usually require that a topological groupoid G is such that:

1. G is locally-compact.
2. G(0) is Hausdorff (in the subspace topology).

However, the groupoid G itself does not have to be Hausdorff. When G is Hausdorff, its unit space will
be closed, see the following lemma.

In fact, non-Hausdorff groupoids arise naturally from dynamical systems and differenrial geometry
(e.g. singular foliations). They give rise to interesting C*-algebras.

Lemma 1.14. Let G be a topological groupoid. Then G is Hausdorff iff G(0) is closed.

Proof. If G is Hausdorff. Then every convergent net in G converges to a unique point. Let {ai}i∈I be
a net in G(0) which converges to a ∈ G. We claim that the limit a must lie in G(0) as well. Since G is
a topological groupoid, the source and range maps s, r : G ⇒ G(0) are continuous. Hence s(ai) → s(a)
and r(ai)→ r(a). But ai ∈ G

(0) for all i, that is, s(ai) = ai = r(ai). Then we have ai → s(a), ai → r(a)
and ai → a. The Hausdorffness of G forces s(a) = a = r(a), that is, a ∈ G(0).

Now assume that G(0) is closed. Let {ai}i∈I be any convergent net in G which converges to both a
and b. We must prove that a = b. Since the multiplication and the inverse maps are continuous, we
have a−1

i ai → a−1b. But a−1
i ai ∈ G

(0) for all i and G(0) is closed. Therefore, a−1b ∈ G(0), which implies
that a = b.

The following examples of topological groupoids are just modifications of Example 1.6.
Example 1.15. 1. A topological group G is a topological groupoid G⇒ pt.

2. A topological space X is a topological groupoid X
id
⇒
id
X together with the trivial multiplication

and inverse maps.
3. A topological group bundle consists of two topological spaces E and X, and a quotient map π : E ↠
X, such that for any x ∈ X, π−1(x) is a topological group. This is a topological groupoid.

4. Let G be a topological group which acts continuously on a space X. Then the action groupoid G⋉X
is a topological groupoid.

5. Let X be a topological space, and R ⊆ X ×X be an equivalence relation on X, equipped with the
subspace topology. Then R⇒ X is a topological groupoid. In particular, the pair groupoid of a
topological space is a topological groupoid.
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6. The fundamental groupoid Π1(X) of a topological space X is a bit tricky. There are various ways
to topologise it, but the “correct” topology is defined only when X satisfy some nice conditions
(path-connected, locally path-connected and semi-locally simply connected). Readers who are
familiar with algebraic topology shall notice that these conditions are precisely what one needs to
obtain a nice classification theory of covering spaces. In such situation, the fundamental groupoid
is realised as a quotient of the pair groupoid and has the quotient topology.

7. The tangent groupoid is a topological groupoid. The topology is defined as follows: we require
that M ×M × (0, 1] is open, and require that a sequence {(xn, yn, ϵn)}n in M ×M × (0, 1] converges
to (x, v, 0) iff

xn → x, yn → x,
xn − yn

ϵn
→ v.

Finally, we define a subclass of topological groupoids called étale groupoids. They are analogs of
discrete groupoids, and easier to study than general topological groupoids. It is a bit surprising that
étale groupoids are already interesting enough, in the sense that many interesting C*-algebras arise as
the C*-algebra of an étale groupoid.

Definition 1.16. A topologial groupoid G is called an étale groupoid, if the source and range maps s, r : G →
G are étale. That is, s and r are local homeomorphisms.

Remark 1.17. Be careful that the maps s and r are étale as maps G → G, but not as maps G → G(0).
This is a stronger argument: it asserts that the inclusion map G(0) ↪→ G is a topological embedding.

Lemma 1.18. If G is an étale groupoid. Then G(0) ⊆ G is open.

Proof. G is étale implies that, for every a ∈ G, there is an open neighbourhood Ua ⊆ G of a such
that s|Ua

: Ua → s(Ua) is a homeomorphism. Then G(0) = ⋃
a∈G s(Ua) is open.

The following lemma states that étale groupoids are “fibrewise discrete”.

Lemma 1.19. If G is étale. Then for any x ∈ G(0), Gx and Gx are discrete.

Proof. G is étale implies that, for every a ∈ G, there is an open neighbourhood Ua ⊆ G of a such
that s|Ua

: Ua → s(Ua) is a homeomorphism. In particular, s is a bijection.
We claim that {a} = Gx ∩ Ua. Clearly {a} ⊆ Gx ∩ Ua. Suppose b ∈ Gx ∩ Ua, then s(b) = x = s(a).

Since s is bijective on Ua, we must have b = a. Therefore, {a} ⊆ Gx ∩ Ua is open in Gx in the relative
topology. So Gx is discrete. The proof for Gx is essentially the same.

September 27, 2022

Haar systems and groupoid C*-algebras
Speaker: Yufan Ge (Leiden University)

Groupoid C*-algebras were introduced by Renault [Ren80], which consist of a large class of interesting
C*-algebras.

In this lecture, all topological groupoids are assumed to be locally-compact and Hausdorff.

2.1 Haar systems

A Haar system is the analog of a Haar measure of a topological group. Recall that

Definition 2.1. A Radon measure is a measure µ on a locally-compact space X, which is

1. Borel: all open subsets are measurable.

10



2. regular: µ is inner regular and outer regular. That is,

µ(E) = sup{µ(K) | K ⊆ E is compact} and µ(E) = inf{µ(U) | U ⊇ E is open}.

3. locally finite: for any x ∈ X, there exists a neighbourhood N of x, such that µ(N) <∞.

Measures on a locally-compact space X are related to linear functionals of Cc(X) by the following
theorem:

Theorem 2.2 (Riesz–Markov–Kakutani representation theorem). Let X be a locally-compact Hausdorff
space, and ψ : Cc(X)→ C (or ψ : Cc(X)→ R) be a linear functional. There exists a complex (or real)
Radon measure µ on X, such that

ψ(f) =
∫

X
f dµ.

This theorem allows us a construct a Radon measure from a linear functional.

Definition 2.3 (Haar system). A Haar system of a locally-compact Hausdorff groupoid G is a family of
Radon measures {µu}

u∈G(0) indexed by G(0), such that

(HS1) supp(λu) = Gu.

(HS2) For any f ∈ Cc(G), the function

λf : G(0) → C, u 7→
∫

G
f(γ) dλu(γ)

is continuous (and hence compactly-supported).

(HS3) For all η ∈ G, the following “left-invariance” holds:∫
G
f(γ) dλr(η)(γ) =

∫
G
f(ηγ) dλs(η)γ.

Example 2.4. Let X be a locally-compact space with Radon measure µ, G be a locally-compact group
with a Haar measure µ. Define the groupoid G := X ×G×X

r
⇒
s
X with

r(x, g, y) := x, s(x, g, y) := y, (x, g, y)(y, h, z) := (x, gh, z).

Then {λx := δx × µ× ν}x∈X is a Haar system of G.
Example 2.5. Let G := G⋉X be the action groupoid. Define the linear functional

λx : Cc(X)→ C, λx(f) :=
∫

G
f(g, g−1x) dµ(g).

This precribes a Haar system {λx}x∈X for G by Riesz–Markov–Kakutani representation theorem. It
suffices to check conditions (HS1)–(HS3). For the first one, we need the following

Lemma 2.6. Let λ : Cc(X)→ C be a positive linear functional. Then

x ∈ suppλ iff λ(f) > 0 for all f ∈ Cc(X) with f(x) > 0.

This implies that suppλx = Gx.
Remark 2.7. Given a Haar system {λu}

u∈G(0) and a Radon measure µ on G(0), we can define a linear
functional on Cc(G):

ν(f) :=
∫

G(0)

∫
G
f(γ) dλu(γ) dµ(u).

Hence defines a measure on G by Riesz–Markov–Kakutani representation theorem.
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Figure 2.1: An r-discrete but not étale groupoid: the fibre has one point at each x ∈ (−1, 1), but has two
points at ±1.

Remark 2.8. Cc(G) may be viewed as a right C0(G(0))-module via

f · ψ(γ) := f(γ)ψ(s(γ)), f ∈ Cc(G), ψ ∈ Cc(G(0)).

Then the Haar system {λu}
u∈G(0) allows for a C0(G(0))-valued inner product

⟨f, g⟩(u) :=
∫

G
f(γ)g(γ) dλu(γ).

The condition (HS2) guarantees that the inner product actually lands in C0(G(0)). Endowed with these
operations, Cc(G) becomes a pre Hilbert C0(X)-module, giving an alternative definition of groupoid
C*-algebras (Remark 2.20)

Definition 2.9. A locally-compact Hausdorff groupoid G is called r-discrete if G(0) is open.

Lemma 2.10. If G is r-discrete. Then Gu and Gu are discrete for all u ∈ G(0).

Proof. G(0) is open, so every singleton {u} is open in Gu. Now for any γ ∈ G, let u = s(γ) and v = r(γ).
Then the map

Gv → Gu, η 7→ ηγ

is continuous, with {γ} = ϕ−1({u}). So {γ} is open.

Lemma 2.11. If G is r-discrete and r is open. Then r is a local homeomorphism.

Lemma 2.12. If G is r-discrete. Then the counting measure on each fibre form a Haar system iff G is
étale.

Example 2.13 (An r-discrete but not étale groupoid). Consider the equivalence relation

E := {(−1, 1), (1,−1)} ∪ {(x, x) | −1 ≤ x ≤ 1}

on E0 := [−1, 1]. The groupoid E ⇒ E(0) is r-discrete, but not étale.

2.2 Groupoid C*-algebras

Let f, g ∈ Cc(G). Define

f ∗ g(γ) :=
∫

G
f(η)g(η−1γ) dλr(η)γ,

f∗(γ) = f(γ−1).

Lemma 2.14. The operations above turn Cc(G) into a *-algebra.
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Proof. We need to check that ∗ is a convolution product. Notice that f ∗g is continuous, and has compact
support because

supp(f ∗ g) ⊆ supp(f) supp(g).
Now we check associativity. We have

((f ∗ g) ∗ h)(γ) =
∫

G
(f ∗ g)(η)h(η−1γ) dλr(γ)η

=
∫

G

∫
G
f(ξ)g(ξ−1η)h(η−1γ) dλr(η)ξ dλr(γ)η;

(f ∗ (g ∗ h))(γ) =
∫

G
f(ξ)(g ∗ h)(ξ−1γ) dλr(γ)ξ

=
∫

G
f(ξ)

∫
G
g(η)h(η−1ξ−1γ) dλr(ξ−1

γ)η dλr(γ)ξ

=
∫

G

∫
G
f(ξ)g(η)h(η−1ξ−1γ) dλs(ξ)η dλr(γ)ξ

Replace η by ξ−1η:

=
∫

G

∫
G
f(ξ)g(η−1η)h(η−1γ) dλs(ξ)(ξ−1η) dλr(γ)ξ

Now use (HS3), dλr(η)(γ) = dλs(η)(η−1γ):

=
∫

G

∫
G
f(ξ)g(ξ−1η)h(η−1γ) dλr(η)ξ dλr(γ)η.

Example 2.15. A Haar system of an étale groupoid G is given by the fibrewise counting measure. Then
for f, g ∈ Cc(G):

f ∗ g(γ) =
∑

r(η)=r(γ)
f(η)g(η−1γ) =

∑
αβ=γ

f(α)g(β).

We wish to complete Cc(G) into a C*-algebra. Let π : Cc(G) → B(Hπ) be a *-representation on a
Hilbert space. Then ∥f∥π := ∥π(f)∥B(Hπ) is a norm for Cc(G), which might be unbounded. To obtain a
C*-norm of Cc(G), one needs to restrict to representations which have a common upper bound. In the
case of group C*-algebras, one considers all possible norms bounded by the L1-norm, and takes suitable
representations to obtain the full and reduced C*-norm. The analog of the L1-norm in the groupoid case
is the I-norm.
Definition 2.16 (I-norm). Let f ∈ Cc(G). Define

∥f∥I,r := sup
u∈G(0)

∫
G
|f(γ)|dλu(γ),

∥f∥I,s := sup
u∈G(0)

∫
G
|f(γ−1)|dλu(γ),

∥f∥I := max{∥f∥I,r, ∥f∥I,s}.

Definition 2.17. A *-homomorphism π : Cc(G)→ B(Hπ) is called I-norm bounded, if ∥f∥π ≤ ∥f∥I for
all f .

Given a Radon measure µ on G(0). Recall that we may define a Radon measure on G as in Remark
2.7:

ν(f) :=
∫

G(0)

∫
G
f(γ) dλu(γ) dµ(u).

We also define
ν−1(f) :=

∫
G(0)

∫
G
f(γ−1) dλu(γ) dµ(u).

Define
Indµ : Cc(G)→ B(L2(G, ν−1)), Indµ(f)(h) :=

∫
G
f(η)h(η−1γ) dλr(γ)(η).
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Proposition 2.18. Let G be a locally-compact Hausdorff groupoid with Haar system, and µ be any Radon
measure on G(0). Then Indµ is an I-norm bounded representation of Cc(G).

Definition 2.19. Let G be a locally-compact Hausdorff groupoid with Haar system.

• The full norm of Cc(G) is

∥f∥ := sup{∥π(f)∥ | π is an I-norm bounded representation.}

The full groupoid C*-algebra C∗(G) is the completion of Cc(G) under the full norm.
• The reduced norm of Cc(G) is

∥f∥r := sup{∥Indδu
(f)∥ | u ∈ G(0), δu is the Dirac measure supported on u.}

The reduced groupoid C*-algebra C∗
r (G) is the completion of Cc(G) under the reduced norm.

Remark 2.20. There is an (even nicer) construction of reduced groupoid C*-algebras C∗
r (G) as follows.

As in Remark 2.8, Cc(G) is a pre-Hilbert C0(G(0)) module. That is, ⟨f, g⟩ is the restriction of f∗ ∗ g
to G(0) and f · ψ(γ) := f(γ)ψ(s(γ)) for f, g ∈ Cc(G) and ψ ∈ C0(G(0)). We complete Cc(G) to a
Hilbert C0(G(0))-module, denoted by L2(G, ν).

The multiplication action of Cc(G) on itself extends to a bounded representation π : Cc(G) →
B(L2(G, ν)). Define the reduced norm of f ∈ Cc(G) to be ∥f∥r := ∥π(f)∥. One checks that this coincides
with the reduced norm defined above, hence refines reduced groupoid C*-algebras via completion.

The case of non-Hausdorff groupoids is more involved: one needs to replace C0(G(0)) by a bigger
algebra, which contains some Borel non-continuous functions on G(0). See [KS02] for more details.
Example 2.21. Let X be a locally-compact Hausdorff space, viewed as a groupoid G := X ⇒ X.
Then Cc(G) = Cc(X). The I-norm is ∥f∥I = supx∈X |f(x)| = ∥f∥∞. This is in fact a C*-norm,
achieved by the multiplication representation on L2(X,µ) for any Radon measure µ on X. The groupoid
C*-algebra C∗(G) = C0(X).
Example 2.22. Let X be a finite set of n-elements, and R be the trivial equivalence relation on X. Then
the groupoid C*-algebra C∗(R) ≃Mn(C).
Example 2.23. Let G be a locally-compact topological group, viewed as a groupoid G := G⇒ pt. If G is
unimodular, then the definition of group and groupoid C*-algebras of G coincide. If G is not unimodular,
we need tiny modification to build the isomorphism between them two. Let f ∈ Cc(G). The involution
on Cc(G) is

f∗(x) := ∆(x)−1f(x−1).

The involution on Cc(G) is
f∗(x) := f(x−1).

Define
ϕ : Cc(G)→ Cc(G), f 7→ ∆−1/2f.

We claim that this is a *-isomorphism of *-algebras, and extends to an isometric isomorphism of
C*-algebras C∗(G) ∼−→ C∗(G). Let π be an I-norm bounded representation of Cc(G). Then π ◦ ϕ
is a representation of Cc(G). Since ∥ϕ(f)∥ is by definition the supremum over all I-norm bounded
representations, we have ∥ϕ(f)∥ ≤ ∥f∥. The other side holds using a disintegration theorem of group
representations and we omit here. Therefore, ∥ϕ(f)∥ = ∥f∥.
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October 4, 2022

Groupoid actions and equivalence actions
Speaker: Jack Ekenstam (Leiden University)

Throughout this lecture, G will denote a groupoid. If G is a topological groupoid, we will always assume
that it is locally-compact and Hausdorff.

3.1 Groupoid actions

Definition 3.1. Let G be a groupoid. Let X be a set together with a map rX : X → G(0) called the
moment map. A left action of G on X is a map

G ∗X → X, (γ, x) 7→ γx,

where
G ∗X := {(γ, x) ∈ G ×X | s(γ) = rX(x)},

such that

• rX(x)x = x for all x ∈ X.

• If (γ, η) ∈ G(2) and (η, x) ∈ G ∗X. Then (γη, x) ∈ G ∗X and (rγ)x = γ(ηx).

A right action is defined similarly, while in that case a moment map is denoted by sX for consistency. If G
acts on X on the left (resp. right), we write G↷ X (resp. X ↶ G) and call X a left (resp. right) G-set.
Unless specified, groupoid actions are always assumed to be left actions.

If G is a topological groupoid and X is a topological space, such that the moment map and the
groupoid action are continous. Then we say X is a G-space.

Definition 3.2. Let X be a G-set. We say:

• G acts transitively on X, if for all x, y ∈ X, there exists γ ∈ G such that x = γy.
• G acts freely on X, if γx = x for some x implies that γ = rX(x).

Example 3.3. • Let G be a groupoid. Then G ↷ G ↶ G in an obvious way. Also G ↷ G(0) ↶ G.
• Let G be a group and X be a G-set. Then G⋉X ↷ X ↶ G⋉X.
We may also define the groupoid version of the action groupoid of a group:

Definition 3.4. Let X be a G-set. The action groupoid G ⋉X is defined as

G ∗X ⇒ X, s(γ, x) = x, r(γ, x) = γx.

Definition 3.5. Let X be a left G-set and x ∈ X. The orbit of x is

{γx | (γ, x) ∈ G ∗X}.

Denote by G\X the set of orbits. If X is a right G-set, we write X/G for the set of orbits.
If X is a G-space. Then we may endow G\X with the quotient topology and call it the orbit space.

Remark 3.6. Recall that in the quotient topology: U ⊆ G\X is open iff q−1(U) ⊆ X is open, where q is
the quotient map. A map f : G\X → Y is continuous in the quotient topology iff it lifts to a continuous
map f̃ : X → Y .

Definition 3.7. A groupoid G is called
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• principal, if G ↷ G(0) is free.
• transitive, if G ↷ G(0) is transitive.

Proposition 3.8. If G is a topological groupoid with r, s open. Let X be a G-space. Then q : X → G\X
is open.

Corollary 3.9. Let G be a locally-compact Hausdorff groupoid with r, s open. Let X be a locally-
compact G-space. Then G\X is locally-compact. If X is second countable, then G\X is too.

Definition 3.10. Let G be a locally-compact Hausdorff groupoid acting on a locally-compact Hausdorff
space X. We say the action is proper, if the map

Θ: G ∗X → X ×X, (γ, x) 7→ (γx, x)

is proper, i.e. the pre-image of a compact set is compact.

Proposition 3.11. Let G be a locally-compact Hausdorff groupoid acting on a locally-compact space X.
The followings are equivalent:

1. G acts properly.
2. For all compact subsets K and L in X, the set

pr1(Θ−1(K × L)) = {γ ∈ G | K ∩ γL ̸= ∅}

is a compact subset in G.
3. Let {xi} be a net converging to x and {γixi} be a net converging to y. Then {γi} has convergent

subnet.

Proposition 3.12. Let G be a locally-compact Hausdorff groupoid with r, s open. Let X be a proper G-
space. Then G\X is locally-compact Hausdorff.

Proof. Let {Gxi} be a net in G\X which converges to both Gx and Gy. We claim that Gx = Gy. Since
the quotient map q : X → G\X is open, we may assume that xi → x and γixi → y by Remark 3.6. Then
there is a subnet of {γi} converging to γ by Proposition 3.11. But X is Hausdorff. So γixi converges
to γx. We therefore have y = γx and Gx = Gy.

Definition 3.13. Let G be a locally-compact Hausdorff groupoid acting on a locally-compact Hausdorff
space X. We say the action is Cartan, if every x ∈ X has a compact neighbourhood K such that Θ−1(K×
K) is compact.

3.1.1 Mackey–Glimm–Ramsey dichotomy

Let G be a second-countable locally-compact Hausdorff groupoid with r, s open, and X be a G-space.
The continuous map

ϕx : Gr(x) → GX, γ 7→ γx

is not open in general. When it is open, the diagram

Gx GX

Gx/Hx

ϕx

q
ϕx

imples that the map ϕx : Gx/Hx → GX is a homeomorphism, where

Hx := {γ ∈ Gr(x) | γx = x}.

We wish to know when we are in such “nice” situations. These are called the Mackey–Glimm–Ramsey
dichotomy and justified by the following theorem.
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Theorem 3.14. Let G be a second-countable, locally-compact Hausdorff groupoid with r, s open. Let X
be a locally-compact Hausdorff G-space. The followings are equivalent:

1. G\X is T0-space.
2. G\X is almost Hausdorff.
3. Each orbit is locally closed in X.
4. Each orbit is a Gδ-subset of X.
5. For any x ∈ X, the map ϕx : Gr(x) → GX, γ 7→ γx is open.

3.2 Equivalence of groupoids

Equivalence of groupoids were introduced by Renault in [Ren82]. One motivation is to define an equivalence
relation which is weaker than isomorphisms, but gives Morita–Rieffel equivalence of C*-algebras.

Definition 3.15. Let G and H be locally-compact Hausdorff groupoids with r and s open. A locally-
compact Hausdorff space Z is called a (G,H)-(Morita) equivalence, if the followings hold:

1. Z is a free and proper left G-space and a free and proper right H-space.
2. The left G-action commutes with the right H-action.
3. The moment map r : Z → G(0) is open and induces a homeomorphism Z/H → G(0).

s : Z → H(0) is open and induces a homeomorphism G\Z → H(0).

Example 3.16. Let Γ ↷ X ↶ Γ′ be commuting actions which are free and proper. Then Γ\X and X/Γ′

are locally-compact Hausdorff. Then X is an equivalence between Γ ⋉ (X/Γ′) and (Γ\X) ⋊ Γ′. This
works for groupoid actions as well.

As a special case, if we take X ↶ Γ′ to be the trivial action. Then X is an equivalence between Γ⋉X
and Γ\X.
Example 3.17 (Blow-ups). Let G be a locally-compact Hausdorff groupoid with open range. Let Z be a
locally-compact space, f : Z → G(0) be an open continuous map. Regard f as a moment map, then Z
can be viewed as a left G-space and a right G-space. The blow-up groupoid is defined as

G[Z] := {(z1, γ, z2) ∈ Z × G × Z | f(z1) = r(γ), s(γ) = r(z2)}.

The groupoid operations are the nature ones. The unit space is {(z, f(z), z)} so we can view G[Z] as a
groupoid over Z.

Let
Z ∗ G := {(z, γ) ∈ Z × G | f(z) = r(γ)}.

We claim that Z ∗ G actually defines a (G[Z],G)-equivalence. The moment maps are given by

s(z, γ) := s(γ), r(z, γ) := z,

and the actions are
(z1, γ, z2)(z2, γ

′) := (z1, γγ
′), (z, γ)η := (z, γη).

Remark 3.18. Let Z be a (G,H)-equivalence. Then the homeomorphism Z/H → G(0) (resp. G\Z → H(0))
is G- (resp. H-)equivariant. These induces homeomorphisms

G\G(0) ≃←− G\Z/H ∼−→ H(0)/H.

So G\G(0) is homeomorphic to H(0)/H.

Proposition 3.19. The groupoid equivalence is an equivalence relation.
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Sketch of proof. • G is a (G,G)-equivalence.

• If Z is a (G,H)-equivalence, with moment maps rZ : Z → G(0) and sZ : Z → H(0). Define an (H,G)-
equivalence Zop as follows:

– As a space, Zop is homeomorphic to Z. We write z̄ ∈ Zop for the image of z ∈ Z in order to
distinguish.

– The left H-action on Zop defined by the followings:

r′
Z

op(z̄) := sZ(z), γz̄ := zγ−1.

– The right G-action on Zop defined by the followings:

s′
Z

op(z̄) := rZ(z), z̄η := η−1z.

• Let Z be a (G,H)-equivalence and Y be an (H,K)-equivalence. Then a (G,K)-equivalence is given
by the quotient

{(z, y) ∈ Z × Y | s(z) = r(y)}/H,

where the right H-action is given by

(z, y) · β := (zβ, β−1y).

Let Z be a (G,H)-equivalence. Then

Z ∗s Z := {(x, y) ∈ Z × Z | s(x) = s(y)}

is closed and locally-compact. It is a free and proper right H-space with diagonal action. In particular,
we have:

Lemma 3.20. Given (x, y) ∈ Z ∗s Z. There exists a unique element τx,y ∈ G such that τx,yy = x.
The map

Z ∗s Z → G, (x, y) 7→ τx,y

is continuous and open. It factors through the homeomorphism Z ∗s Z/H → G.

With the help of this lemma we are able to prove that

Theorem 3.21. Let G and H be locally-compact Hausdorff groupoids. Then G is equivalent to H iff there
exists a space Z such that the blow-up groupoids G[Z] and H[Z] are isomorphic.

October 11, 2022

Groupoid correspondences
Speaker: Bram Mesland (Leiden University)

In this talk, all groupoids are locally-compact and Hausdorff and equipped with a Haar system. As a
consequence, their source and range maps are open. We will refer to them simply as groupoids.

Some main references of this talk are [HS87; Lan01; MSO99; Mrč99; Tu04].

18



4.1 Groupoid correspondences

We wish to construct a nice category of groupoids, such that taking the groupoid C*-algebra is a functor
mapping to a suitable category of C*-algebras: the category of C*-correspondence Corr. We also request
that Morita equivalent groupoids are mapped to Morita–Rieffel equivalent C*-algebras. This requires
a suitable notion of “generalised homomorphisms” between groupoids. These, as we will define in the
following, are groupoid correspondences.

Definition 4.1. Let G and H be groupoids. A (G,H)-(groupoid) correspondence, or a generalised
homomorphism from G to H, is a space Z with commuting left G-action and right H-action

G ⊇ G(0) rZ←− Z sZ−→ H(0) ⊆ H,

or briefly,
G ← Z → H,

such that:

• G ↷ Z is free and proper.
• Z ↶ H is proper.
• The moment map Z

sZ−→ H(0) factors through the homeomorphism G\Z ∼−→ H(0). That is, the
following diagram commutes:

Z H(0)

G\Z

sZ

q ≃

Remark 4.2. Our definition of groupoid correspondences is slightly different from that from [Wil19],
wherein the action Z ↶ H is not assumed to be proper. However, the properness condition is essential to
give a C*-correspondence.
Example 4.3. Let φ : H → G be a strict homomorphism. Do we need φ to be proper? Define

Graph(φ) := {(γ, u) ∈ G ×H(0) | ϕ(u) = s(γ)}.

It admits a left G-action obviously, and a right H-actions via

(γ, u)h := (γφ(h), s(h)).

This gives a (G,H)-correspondence.
As a special case, if H ⊆ G is a subgroupoid. Then the inclusion H ↪→ G gives a (G,H)-correspondence.

4.1.1 Composition of correspondences

Now we define the composition of correspondences. Given two correspondences

G rZ←− Z sZ−→ H, H rW←−−W sW−−→ K,

Let
Z ∗W := {(z, w) | Z ×W | sZ(z) = rW (w)}.

H acts on Z ∗W on the right via the diagonal action. Consider the quotient

Z ∗H W := {(z, w) ∈ Z ×W | sZ(z) = rW (w)}/H.

Since H↷W freely and properly, the space Z ∗H W is locally-compact Hausdorff ([Wil19, Proposition
2.18]). We equip it with a free and proper left G-action, and a proper right K-action

g[z, w] := [gz, w], [z, w]k := [z, wk], for g ∈ G, k ∈ K, [z, w] ∈ Z ∗H W.
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Definition and Lemma 4.4. If H has open range and source maps. Then G ← Z ∗H W → K is a
correspondence. We define it to be the composition of

G rZ←− Z sZ−→ H and H rW←−−W sW−−→ K.

Thanks to the composition, we are now able to define a category of groupoid correspondences.

Definition 4.5. The category Gr of groupoid correspondences consist of the following data:

• Objects are groupoid.
• An arrow from G to H is a correspondence G ← Z → H.
• Composition of arrows is given by Definition and Lemma 4.4.

Example 4.6. The correspondence G r←− G s−→ G is the identity arrow of G in Gr. In fact, we have

G ∗G Z ≃ Z, W ∗G G ≃W

for a left G-space Z and a right G-space W .
A correspondence G ← Z → H is invertible, if there exists another correspondence H ← W → G,

such that
Z ∗H W ≃ G, W ∗G Z ≃ H.

4.1.2 Morita equivalences revisited

Proposition 4.7. A correspondence G ← Z → H is invertible iff Z is an (G,H)-equivalence.

Remark 4.8. • Let G and H be groups. Then they are Morita equivalent as groupoids iff they are
isomorphic as groups.

• Let G and H be spaces. Then they are Morita equivalent as groupoids iff they are homeomorphic
as spaces.

Now we revisit the blow-up construction in the previous talk, and show that a Morita equivalence can
be lifted to an isomorphism of groupoids.

Let G ← Z → H be a correspondence. Recall that (Example 3.17) the blow-up groupoid is defined as

H[Z] := {(z1, h, z2) ∈ Z ×H× Z | s(z1) = r(h), r(z2) = s(h)},

and the space
W := {(z, h) ∈ Z ×H | s(z) = r(h)}

implements a (H[Z],H)-equivalence.
Define

ψ : H[Z]→ G, (z1, g, z2) 7→ (z1, gz2) ∈ Z ∗H Z.

Since G acts on Z freely, the object (z1, gz2) uniquely determines an element in G. The composition
yields a map ψ : H[Z]→ G.

Proposition 4.9. Let G ← Z → H be a correspondence. Then Z ≃ W op ∗H[Z] Graph(ψ). So Z is a
composition of a blow-up groupoid with a strict homomorphism.
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4.2 From groupoid correspondences to C*-correspondences

Now we pass to C*-correspondences. As mentioned before, we wish to furnish a functor, which on the
object level maps groupoids to their groupoid C*-algebras. The suitable target category is the category
of C*-correspondences.

Definition 4.10. The category Corr of C*-correspondences consist of the following data:

• Objects are C*-algebras.
• An arrow from A to B is a (A,B)-correspondence AXB. That is, a right Hilbert B-module X and

a *-homomorphism A→ BB(X) to the bounded adjointable operators on the Hilbert B-module X.
• Composition of arrows is given by the tensor product of Hilbert C*-modules

AXB ◦ BY C := A(X ⊗B Y )C .

Recall that two C*-algebras A and B are Morita–Rieffel equivalent iff there is an imprimitiv-
ity (or Morita equivalence) A,B-bimodule AEB. That is, a Hilbert B-module E together with a
*-isomorphism A→ KB(E). We write A ∼Morita B if A and B are Morita–Rieffel equivalent.

The following propositions (sometimes used as definitions) are well-known to C*-algebraists:

Proposition 4.11. Let A,B be C*-algebras.

• A ∼Morita B iff A ≃ B in Corr.
• If A and B are separable. Then A ∼Morita B iff K⊗A ≃ K⊗B as C*-algebras.

We wish to construct a functor Gr → Corr. On the arrow level this means we need to construct a
C*-correspondence out of a groupoid correspondence.

Let G ← Z → H be a groupoid correspondence. Pick any z ∈ Z with s(z) = r(η). Then Cc(Z) carries
a Cc(H)-valued inner product given by

⟨ψ, ϕ⟩(η) :=
∫

G
ψ(g−1z)ϕ(g−1zη) dλr(z)g, ψ, ϕ ∈ Cc(Z).

This is independent of the choice of z because G\Z ≃ H(0). The integral converges because G\Z ≃ G(0).
Now Cc(Z) is a (Cc(G),Cc(H))-bimodule: the left Cc(G)-module structure is

f · ϕ(z) :=
∫

G
f(g)ϕ(g−1z) dλr(z)g;

and the right Cc(H)-module structure is given by

ϕ · g(z) :=
∫

G
ϕ(zh)g(h−1) dλs(z)h.

One checks that the followings are satisfied:

⟨f∗ψ, ϕ⟩ = ⟨ψ, fϕ⟩, ⟨ψ, ϕ · g⟩ = ⟨ψ, ϕ⟩ ∗ g, ⟨fϕ, fϕ⟩ ≤ ∥f∥C∗(G)⟨ϕ, ϕ⟩.

The last equality guarantees that
∥ϕ∥2 := ∥⟨ϕ, ϕ⟩∥C∗(H)

defines a norm on Cc(Z), making it into a pre-Hilbert C∗(H)-module.
Denote byX(Z) the right C∗(H)-module completion of Cc(Z). Upon replacing all norms on convolution

algebras by the reduced norms we obtain a reduced version Xr(Z) as a right C∗
r (H)-module.

Theorem 4.12 ([MSO99; Tu04]). C∗(G)X(Z)C∗(H) and C∗
r (G)Xr(Z)C∗

r (H) are C*-correspondences.
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Theorem 4.13 ([MRW87]). Let G ← Z → W be a (G,H)-equivalence. Then X(Z) and Xr(Z) are
imprimitivity bimodules.

Theorem 4.14. There is a functor Gr→ Corr, which:

• on the object level, sends a groupoid G to its groupoid C*-algebra C∗(G).
• on the arrow level, sends a groupoid correspondence G ← Z → H to a C*-correspondence

C∗(G)X(Z)C∗(H).

As a corollary, Morita equivalent groupoids have Morita–Rieffel equivalent C*-algebras.

Remark 4.15. The most difficult part of the proof is to show that Cc(Z∗HW ) is dense inX(Z)⊗C∗(H)X(W ),
so that the composition of groupoid correspondences is sent to the composition of C*-correspondences.
For this to be true, we have different choices of axioms for a groupoid correspondence. One option is in
[Hol17].
Remark 4.16. An alternative proof of the equivalence theorem of reduced groupoid C*-algebras (Theorem
4.14) is given in [SW12]. This is explained in more details in Lecture 5 of Dimitris.

The main ingredient is the linking groupoid. Let G ← Z → H be a (G,H)-equivalence. The linking
groupoid is defined as

L := G
∐

Z
∐

Zop∐H⇒ G(0)∐H(0).

The source and range maps are inherited from the source and range maps of G, Z, Zop and H. The
multiplication of L restricts to the multiplication of G and H, and the groupoid actions of G and H on Z
and Zop. The inverse of L restricts to the inverse of G and H, and the identity homemorphism Z → Zop.

The data above define a groupoid; in particular, it accommodates a Haar system if so do G and H.
This is because the actions of G and H on Z induce homeomorphisms Z/H → G(0) and G\Z → H(0).
Thus, given any u ∈ G(0), pick any z ∈ Z with r(z) = u. There is a Radon measure νu on Z determined
by the linear functional

Cc(Z)→ C, ϕ 7→
∫

H
ϕ(zη) dλs(z)η,

which is supported on the orbit of z under the H-action. It is independent of the choice of z in the source
fibre due to the left-invariance of λ.

Therefore, ∫
Z
ϕ(z) dλs(z)z :=

∫
H
ϕ(zη) dνuη

determines a set of Haar measure {νu}
u∈G(0) , each νu supported on r−1(u). A similar construction applies

to Zop and yield a set of Haar measure indexed by H(0). These, together with the Haar system of G
and H, furnish a Haar system of L (see [SW12, Lemma 4]).

Eventually, Sims and Williams showed that the full (reduced) groupoid C*-algebra C∗(L) (C∗
r (L)) are

isomorphic to the linking algebra of the imprimitive bimodule X(Z) (Xr(Z)). This provides a uniform
and structral setup for equivalence theorems of groupoids and their C*-algebras.

October 18, 2022

Morita equivalence of groupoids and their C*-algebras
Speaker: Dimitris Gerontogiannis (Leiden University)

Recall from Bram’s talk that we are able to construct a functor

Gr→ Corr
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from the category of groupoid correspondences to the category of C*-correspondences. In particular,
we have a notion of correspondences as morphisms in Gr which are strictly weaker than groupoid
homomorphisms, and such that the isomorphisms in both categories are implemented by Morita(–Rieffel)
equivalences. In this talk, we provide more details of the proof and the underlying constructions of linking
groupoids.

5.1 Morita equivalences

Recall the Morita–Rieffel equivalence of C*-algebras. They are implemented by imprimitivity bimodules.

Definition 5.1. Let A and B be C*-algebras. An imprimitivity A,B-bimodule is given by a right
Hilbert B-module E which is simultaneously a left Hilbert A-module , and such that the B-valued inner
product ⟨·, ·⟩B is compatible with the A-valued inner product A⟨·, ·⟩. That is,

⟨x, ay⟩B = ⟨a∗x, y⟩B, A⟨xb
∗, y⟩ = A⟨x, yb⟩, A⟨x, y⟩z = x⟨y, z⟩B

for all x, y, z ∈ E, a ∈ A and b ∈ B.
We say A and B are Morita–Rieffel equivalent, if there exists an imprimitivity bimodule between

them.

5.1.1 Kronecker flow of irrational angle ϑ

Consider the action R ↷ T2 by
t · (z1, z2) := (e2πitϑz1, e2πitz2).

We form the action groupoid G := T2 ⋊ R. Its elements are of the form (z1, z2, t) ∈ T2 × R, with
multiplication given by

(e2πitϑz1 , e2πitz2, s)(z1, z2, t) = (z1, z2, s+ t).

The groupoid C*-algebra C∗(G) is very large. We may, however, construct a Morita–Rieffel equivalent
C*-algebra to it, using transversal.

A transversal is a subspace in the object space which intersects every orbit. In this example, we
restrict to a single copy of T:

T := T× {1} × {0} ⊆ G(0)

Restricting G to T (Definition 1.11) yields a subgroupoid GT
T , which is naturally isomorphic to T ⋊ Z,

with multiplication given by
(e2πikϑ,m)(z, n) := (z,m+ n).

Notice that we have replaced R by Z: this is because by restricting to T , the action given by R are
required to be an integer multiple of 2π.

We leave the following as an
Exercise 5.2. GT

T is an étale groupoid.
Now notice that we have a groupoid correspondence

G r←− GT
T

s−→ GT
T

with two commuting free and proper actions. These actions factor through homeomorphisms

G/GT
T ≃ G

(0) and G\GT
T ≃ T,

hence give a Morita equivalence. Therefore C∗
r (G) is Morita–Rieffel equivalent to C∗

r (GT
T ) = Aϑ, the

irrational rotation algebra (or noncommutative torus). Moreover, C∗
r (G) is stable and separable. Hence

C∗
r (G) ≃ C∗

r (G)⊗K ≃ Aϑ ⊗K.
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5.1.2 Brown–Green–Rieffel theorem

The notion of Morita–Rieffel equivalence is an analog of Morita equivalence of rings. Two rings A and B
are Morita equivalent iff they have the same category of modules. One might wish to translate this notion
to C*-algebras as well, replacing modules over rings by Hilbert spaces. This will yield a weaker notion
than Morita–Rieffel equivalence.

For now let us write Rep(A) for the category of Hilbert spaces admitting non-degenerate left actions
of A, with arrows unitary intertwiners. We say two A and B are weakly Morita equivalent, if Rep(A) ≃
Rep(B). Then we have:

Proposition 5.3. If A and B are Morita–Rieffel equivalent through imprimitivity bimodule E. Then the
functor

E ⊗B − : Rep(B)→ Rep(A)

is an equivalence of category. Hence Morita–Rieffel equivalent C*-algebras are weakly Morita equivalent.

Remark 5.4. The fullness of E as a Hilbert B-module assures that E ⊗B − sends a non-degenerate
representation to another non-degenerate representation.

The following colourful theorem illustrates equivalent characterisations of Morita–Rieffel equivalence:

Theorem 5.5 (Brown–Green–Rieffel). Let A and B be C*-algebras. The followings are equivalent:

1. A is Morita–Rieffel equivalent to B.
2. There exists a full Hilbert B-module E such that A ≃ KB(E).

If moreover A and B are σ-unital. Then both 1 and 2 are also equivalent to:

3. A⊗K ≃ B ⊗K.

5.2 Equivalence theorem of groupoid C*-algebras

In the following, we will prove the equivalence theorem (Theorem 4.14) following [SW12]. Let us rephrase
it here:

Theorem 5.6. Morita equivalent groupoids have Morita–Rieffel equivalent C*-algebras.

5.2.1 Linking algebra

A key tool in the proof is the linking algebra. Let us recall:

Definition 5.7. Let A be a C*-algebra.

• A corner of A is a subalgebra of the form pAp, where p is a projection in the multiplier of A. It is
a full corner if ApA = A.

• Two corners pAp and qAq are complementary, if p+ q = 1.

Theorem 5.8 (Brown–Green–Rieffel). A ∼Morita B iff there exists a C*-algebra C such that A and B
are full, complementary corners in a C*-algebra C.

The C*-algebra C is called a linking algebra of A and B.

Proof. If A = pCp. Then Cp is a imprimitivity C,A-bimodule. So C ∼Morita A. Similarly B ∼Morita C.
Therefore A ∼Morita B.

Conversely. Let AEB be an imprimitivity A,B-bimodule. Let

C0 :=
{(

a x
y b

) ∣∣∣∣∣ a ∈ A, b ∈ B
x ∈ E, y ∈ Eop

}
,
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where Eop denotes the dual module of E, which is an imprimitivity B,A-bimodule. The image of y ∈ E
under the anti-isomorphism E

∼−→ Eop is denoted by y.
We turn C0 into a *-algebra by setting(

a1 x1
y1 b1

)(
a2 x2
y2 b2

)
:=
(
a1a2 + A⟨x1, y2⟩ a1x2 + x1b2
y1a2 + b1y2 ⟨y1, x2⟩B + b1b2

)
,

(
a x
y b

)∗

:=
(
a∗ y
x b∗

)
.

View B as a Hilbert B-module. Consider the direct sum Hilbert B-module E ⊕ B. Then C0 acts
on E ⊕B as bounded adjointable operators:(

a x
y b

)(
z

b′

)
:=
(

az + xb′

⟨y, z⟩B + bb′

)
.

Let C be the completion of C0 in BB(E ⊕B). Then A (or B) embeds as the top-left (or bottom-right)
corner of C. Notice that here we uses E is full, because aE = 0 implies 0 = a⟨E,E⟩ = aA and hence a = 0.

Now we let
p :=

(
idE

)
, q :=

(
idB

)
.

They satisfy p, q ∈ M(C) and p + q = 1. Hence A = pCp and B = qCq are complementary corners
in C.

5.2.2 Linking groupoid

Now we construct linking groupoids. Let G be a groupoid with Haar system λ, H be a groupoid with
Haar system β. Let G r←− Z s−→ H be an equivalence. The linking groupoid is

L := G
∐

Z
∐

Zop∐H⇒ G(0)∐H(0).

We need to construct a Haar system for L, which comes from the Haar systems of G and H. Since rZ : Z →
G(0) factor through the homeomorphism Z/H ∼−→ G(0). For any u ∈ G(0), pick z ∈ r−1

Z (u). Associate to it
a Radon measure σu

Z on Z:

σu
Z(ϕ) :=

∫
H
ϕ(z, η) dβs(z)η, ϕ ∈ Cc(Z)

which is supported on the orbit z · H and is independent of z. Likewise we define a Radon measure σv
Z

op

on Zop supported on z · G for v ∈ H(0), z ∈ rZ
op(v). We also have

Proposition 5.9. The map
u 7→

∫
Z
ϕ(z) dσu

Z(z)

is continuous on Cc(G(0)).

Then we have

Proposition 5.10. For every w ∈ L(0) = G(0)∐H(0). For each F ∈ Cc(L), define

kw(F ) :=
{

λw(F |G) + σw
Z (F |Z) if w ∈ G(0);

σw
Z

op(F |Zop) + βw(F |H) if w ∈ H(0).

Then {kw}
w∈L(0) defines a Haar system.
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Proposition 5.11. We have Morita equivalences C∗(G, λ) ∼Morita C∗(H, β) and C∗
r (G, λ) ∼Morita

C∗
r (H, β).

Proof. Define the *-homomorphism v : Cb(L(0))→M(C∗(L)) by

(v(ϕ)f)(γ) := ϕ(r(γ))f(γ), (fv(ϕ))(γ) := f(γ)ϕ(s(γ)).

The characteristic functions χG(0) , χH(0) ∈ Cb(L(0)). Their images in M(C∗(L)) are projections; let us
call them PG and PH. If PG and PH are full, then PGC∗(L)PG ∼Morita PHC∗(L)PH via PGC∗(L)PH. We
also have Cc(G) ⊆ PGC∗(L)PG and Cc(H) ⊆ PHC∗(L)PH as dense subalgebras. This will finish the proof
that C∗(G) ∼Morita C∗(H). A similar result holds for the reduced counterpart C∗

r (G) ∼Morita C∗
r (H).

Henceforth we need to prove that PG (and by symmetry, PH) is full. We use the following

Lemma 5.12 ([MRW87, Proposition 2.10]). There is a net {eα} in Cc(G) of the form

eα =
nα∑
i=1
⟨ϕα

i , ϕ
α
i ⟩C∗(G)

for a finite number nα and ϕα
i ∈ Cc(Z). This is an approximate identity with respect to the inductive

limit topology for the action Cc(G) ↷ Cc(G) and Cc(G) ↷ Cc(Z). That is,

eα ∗ ϕ→ ϕ, ψ ∗ eα → ψ,

for ϕ ∈ Cc(G) and ψ ∈ Cc(G) or ψ ∈ Cc(Z).

Now for F,K ∈ Cc(L). Write them as block matrices(
F11 F12
F21 F22

)
and

(
K11 K12
K21 K22

)

where F11 := F |G, F12 := F |Z , F21 := F |Zop , F22 := F |H and similar for K.
We compute the operator F ∗ pG ∗K, which is of the form(

F11 ∗K11 F11 ·K22
F21 ·K11 ⟨F ∗

21,K12⟩C∗(G)

)
.

Lemma 5.12 imples that the elements of the form F11 ∗K11 are dense in Cc(G) and that F12 ·K22 are dense
in Cc(Z). A similar statement for the right H-action on Z implies that the elements of the form F21 ·K11
are also dense in Cc(Zop). It is left to show that elements of the form ⟨F ∗

21,K12⟩C∗(G) are also dense
in Cc(H). This is due to a standard technique from [Wil07, Page 115].

Hence operators of the form F ∗ pG ∗K are dense in C∗(L). We conclude that pG is full.

Remark 5.13. As a corollary. Up to Morita equivalence, the groupoid C*-algebra is independent of the
underlying Haar system.
Example 5.14. As an example. Consider G ↷ X ↶ H where G and H are groups acting freely and
properly on X. The freeness and properness assures that both G\X and X/H are locally-compact and
Hausdorff. Then we have a Morita equivalence given by

G⋉X/H ← X → G\X ⋊H.

As a special case, if H is trivial. Then we obtain the Morita equivalence G⋉X ∼Morita G\X implemented
by the space X.
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October 25, 2022

Morita equivalence of Fell bundles
Speaker: Bram Mesland (Leiden University)

The contents of this lecture comes from an ongoing work of Bram and Mehmet Haluk Şengün [MŞ22].

6.1 Motivation

Let H be a locally-compact group. Let Z be a free and proper right H-space. Then H acts freely and
properly on Z × Z via the diagonal action

(z1, z2) · h := (z1h, z2h).

Write Z ×H Z := Z × Z/H for the quotient space. It is a groupoid over the Hausdorff space Z/H with
structure maps given by

[z1, z2] · [z2, z3] := [z1, z3], r([z1, z2]) = z1, s([z1, z2]) = z2,

ι(z) = [z, z], [z1, z2]−1 = [z2, z1].

Namely, it is the reduction of the pair groupoid Z × Z → Z. It is called the Atiyah groupoid of the
principal H-bundle Z → Z/H. In particular, Z ×H Z is Morita equivalent to H. The Morita equivalence
is implemented by Z with left Z ×H Z-action

[z1, z2] · z := z1 · h, where h ∈ H is uniquely decided by z2h = z.

Then the completion X(Z) of Cc(Z) is a imprimitivity bimodule between C∗(Z×H Z) and C∗(H). We
wish to understand the C*-algebra C∗(Z×HZ). First notice that it contains a dense subalgebra CH

c (Z×Z)
consisting of H-equivariant maps on Z ×Z with compact support. On this subalgebra, the Cc(H)-valued
inner product is given by

⟨f1, f2⟩(h) :=
∫
f1(z)f2(zh) dµ(z) =: ⟨f1, α(h)f2⟩L2(Z).

We call the function h 7→ ⟨f1, f2⟩(h) the matrix coefficient of α(h). We need to assume that it lies
in L1(H).

Now let (ρ, Vρ) be a unitary representation. Consider the pre-Hilbert Cc(H)-module Cc(Z)⊗H Vρ,
whose inner product is given by

⟨f1 ⊗ v1, f2 ⊗ v2⟩(h) := ⟨f1 ⊗ v1, (α⊗ ρ)(h)f2 ⊗ v2⟩ = ⟨f1, α(h)f2⟩L2(Z) · ⟨v1, ρ(h)v2⟩Vρ
.

Denote the completion of this pre-Hilbert module by X(Z, Vρ).
Notice that already in the case where ρ is the trivial representation, X(Z) implements a Morita–Rieffel

equivalence between C∗(H) and C∗(H×Z H). Does X(Z, Vρ) also implement a Morita–Rieffel equivalence
between suitable C*-algebras? For this we need to understand the C*-algebra of compact operators
on X(Z, Vρ).

Denote by CH
c (Z × Z,K(Vρ)) the space of H-equivariant continuous functions ϕ : Z × Z → K(Vρ)

such that the map
Z × Z → C, ξ 7→ ∥ϕ(ξ)∥

has compact support on Z ×H Z. It carries a *-algebra structure

ϕ1 ∗ ϕ2(η) :=
∫

Z×Z
ϕ1(ξ)ϕ2(ξ−1η) dνr(η)ξ, ϕ∗(ξ) := ϕ(ξ−1)∗.
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With this *-algebra structure, CH
c (Z × Z,K(Vρ)) is a *-subalgebra of K(X(Z, Vρ)).

Consider the following associated algebra bundle

(Z × Z)×H K(Vρ)→ Z ×H Z. (1)

This is an upper-semi-continous bundle of Banach spaces because ξ 7→ ∥ξ∥ is upper-semi-continuous. The
sections of this upper-semi-continous Banach bundle, as is well-known in the theory of principal bundles,
are in natural bijection with such H-equivariant functions. That is, we have

Γc(Z ×H Z, (Z × Z)×H K(Vρ)) ≃ CH
c (Z × Z,K(Vρ)), (2)

where Γc(Z ×H Z, (Z × Z) ×H K(Vρ)) is the *-algebra of compactly-supported sections of the algebra
bundle (1). This is a pre C*-algebra. It turns out that (Z ×Z)×H K(Vρ) is indeed a Fell bundle over the
Atiyah groupoid Z ×H Z → Z/H, and the completion of Γc(Z ×H Z, (Z × Z)×H K(Vρ)) is the section
C*-algebra of this Fell bundle.

6.2 Fell bundles

Let G be a groupoid. Let π : A → G be an upper-semi-continuous bundle of Banach spaces. Set

A(2) := {(a1, a2) ∈ A×A | (π(a1), π(a2)) ∈ G(2)}.

Definition 6.1. A Fell bundle is an upper-semi-continuous bundle of Banach spaces A → G together
with:

• A continous, bilinear, associative “multiplication map” A(2) → A, (a, b) 7→ ab;
• An anti-linear “involution map” ∗ : A → A, a 7→ a∗,

such that:
1. π(ab) = π(a)π(b).
2. π(a∗) = π(a)−1.
3. (ab)∗ = b∗a∗.
4. For all x ∈ G(0), π−1(x) is a C*-algebra.
5. For all ξ ∈ G, π−1(ξ) is a (π−1(r(ξ)), π−1(s(ξ)))-Morita equivalence.

Remark 6.2. A may be viewed as a groupoid in Corr, and π is a *-functor from Corr to G considered as a
category.

Let π : A → G be a Fell bundle. The space of compactly-supported sections Γc(G, A) is a *-algebra:
the convolution product and the involution are given by

s1 ∗ s2(η) :=
∫

G
s1(ξ)s2(ξ−1η) dλr(η)ξ,

s∗(ξ) := s(ξ−1)∗.

It may be equipped with a C*-norm and completed into a C*-algebra, called the section C*-algebra
of this Fell bundle.
Example 6.3. Let Γ be a discrete group. A strongly Γ-graded C*-algebra is a C*-algebra A together with
subspaces {Aγ}γ∈Γ indexed by Γ, and such that

A =
⊕
γ∈Γ

Aγ , AγAδ ⊆ Aγδ, A∗
γ = A

γ
−1 , A

γ
−1Aγ = Ae = AγAγ

−1 .

A strongly Γ-graded C*-algebra as above gives a Fell bundle∐
γ∈Γ

Aγ

over Γ. The section C*-algebra recovers A.
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Proposition 6.4. (1) is a Fell bundle, with structure maps

(z1, z2, k1)(z′
2, z3, k2) = (z1, z3h, k1ρ(h−1)k2ρ(h)) for z2 = z′

2h;
(z1, z2, k)∗ = (z2, z1, k

∗).

Under the structure maps, the *-algebra of compactly-supported sections of this Fell bundle is isomorphism
to the *-algebra of compact-supported kernels. That is, the bijective correspondence of sets (2) is an
isomorphism of *-algebras.

6.3 Equivalence of Fell bundles

Now we describe actions of Fell bundles.

Definition 6.5. Let q : E → Z be a upper-semi-continuous Banach bundle. Let Z be a left G-space.
Let π : A → G be a Fell bundle. Set

A ∗ E := {(a, e) | s(π(b)) = r(q(e))}.

A left action of A on E is a map
A ∗ E → E, (a, e) 7→ ae,

such that:

1. q(ae) = π(a)q(e).
2. a(be) = (ab)e.
3. ∥be∥ = ∥b∥∥e∥.

Right actions are defined similarly.

Definition 6.6. Let G ← Z → H be a Morita equivalence of groupoids. Let πA : A → G and πB : B → H
be Fell bundles.

An equivalence of Fell bundles A and B is an upper-semi-continuous Banach bundle q : E → Z such
that there are sesquilinear maps

E ×s E → A, (e1, e2) 7→ A⟨e1, e2⟩,
E ×r E → B, (e1, e2) 7→ ⟨e1, e2⟩B,

where

E ×s E := {(e1, e2) | s(q(e1)) = s(q(e2))},
E ×r E := {(e1, e2) | r(q(e1)) = r(q(e2))}.

satisfying:

1. πG(A⟨e1, e2⟩) = [q(e1), q(e2)]G ∈ Z ×s Z/H.
2. πH(⟨e1, e2⟩B) = [q(e1), q(e2)]H ∈ G\Z ×r Z.
3. ⟨e1, e2⟩

∗ = ⟨e2, e1⟩.
4. A⟨ae1, e2⟩ = aAe1, e2 and ⟨e1, e2b⟩B = ⟨e1, e2⟩Bb.
5. e1⟨e2, e3⟩B = A⟨e1, e2⟩e3.
6. Each q−1(z) is a Morita–Rieffel equivalence between (π−1

G (r(Z)), π−1
H (s(Z))).

Let us write
A E B

G Z H
for such an equivalence of Fell bundles.
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Theorem 6.7. Let q : E → Z be an equivalence of Fell bundles A → G and B → H. Then the space of
compactly-supoorted sections Γc(Z,E) admits a pre-Hilbert (Γc(G,A),Γc(H,B))-bimodule structure. Its
completion implements a Morita–Rieffel equivalence of the corresponding C*-algebras.

Now we are at the place to state the equivalence between the C*-algebras

C∗(H) and C∗((Z × Z)×H K(Vρ))

implemented by X(Z, Vρ). Notice that both sides are section C*-algebras of a Fell bundle

(Z × Z)×H K(Vρ) and H × C.

The goal is to show the following equivalence of Fell bundles:

(Z × Z)×H K(Vρ) Z × Vρ H × C

Z ×H Z Z H.

The structure maps are given as follows:

• (z, v)(h, λ) := (zh, λρ(h−1)v), for (z, v) ∈ Z × Vρ and (h, λ) ∈ H × C.

• (z1, z2, k) · (z, v) := (z1h, ρ(h−1)kρ(h)v), for (z1, z2, k) ∈ (Z × Z) ×H K(Vρ) and (z, v) ∈ Z × Vρ

with z2h = z.
• (Z×Z)×HK(Vρ)⟨(z1, v1), (z2, v2)⟩ := (z1, z2, |v1⟩⟨v2|), for (z1, v1), (z2, v2) ∈ Z × Vρ.

• ⟨(z1, v1), (z2, v2)⟩H×C := (h−1, ⟨v1, ρ(h)v2⟩), for (z1, v1), (z2, v2) ∈ Z × Vρ with z2h = z1.

Theorem 6.8 (Mesland–Şengün). If (ρ, Vρ) has L1-matrix coefficients. Then for any free and proper H-
space Z, there is a Morita equivalence between the section C*-algebra of the Fell bundle (Z×Z)×H K(Vρ)
and C∗(H).

November 1, 2022

Purely-infinite C*-algebras from dynamical systems
Speaker: Francesca Arici (Leiden University)

The main reference of this talk is [AD97]; relavent results (which are unfortunately not covered due to
time issues) are in [ADS19; BL20].

Let A be a C*-algebra.

Definition 7.1. A projection p ∈ A is infinite if it is equivalent to a proper subprojection of itself. That
is, there exists an isometry v such that

v∗v = p, vv∗ ≤ p but vv∗ ̸= p.

We say p is properly infinite, if it is infinite and has two mutually orthogonal subprojections, which are
both equivalent to p.

Definition 7.2. An AF-algebra is a C*-algebra A such that there is an increasing sequence A1 ⊆ A2 ⊆ · · ·
of finite-dimensional C*-subalgebras of A, such that ⋃iAi = A.

Theorem 7.3. Any projection in an AF-algebra is finite.
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Pure infiniteness was first introduced for von Neumann algebras, then defined by Cuntz for simple
C*-algebras and by Kirchberg and Rørdam for non-simple C*-algebras. In this talk, we will only look at
simple purely-infinite C*-algebras.

Definition 7.4. A C*-subalgebra B ⊆ A is called hereditary if a ∈ A and b ∈ B satisfy 0 ≤ a ≤ b,
then a ∈ B.

Example 7.5. Every ideal in A is hereditary.

Definition 7.6. A simple C*-algebra is purely-infinite if every non-zero hereditary C*-subalgebra contains
an infinite projection.

Why do we care about these C*-algebras? Kirchberg proved that simple, nuclear, purely-infinite
separable stable C*-algebras that satisfy the UCT are classified by their K-theory.

We want to study sufficient conditions for the C*-algebra C∗
r (G) of an r-discrete groupoid to be

purely-infinite. For these, we first define another concept of freeness or principalness for topological
groupoids.

Definition 7.7. A topological groupoid G is topologically principal or essentially free, if the set

{x ∈ G(0) | Gx
x = {x}}

is dense in G.

Recall that (c.f. Definition 2.19 and Remark 2.20) the reduced groupoid C*-algebra C∗
r (G) for second-

countable, r-discrete groupoids is the Hilbert C0(G(0))-module completion of Cc(G) under the norm given
by the left regular representation. In particular, we have that (c.f. [Ren80]) C∗

r (G) has a tracial state iff
there exists a finite G-invariant probability measure µ on G(0).

Proposition 7.8 ([Ren80, Chapter II, Proposition 4.6]). If G is essentially free and r-discrete. Then

C∗
r (G) is simple iff G is minimal.

We need one more definition to give a sufficient condition for pure infiniteness of C∗
r (G).

Definition 7.9. A topological groupoid G is locally-contracting if for every non-empty open subset U ⊆
G(0), there exists an open subset V ⊆ U and an open bisection S such that V ⊆ s(S) and α

S
−1(V ) ⫋ V .

Here the map α
S

−1 is defined as

α
S

−1 : s(S)→ r(S), x 7→ s(xS−1).

Proposition 7.10. Let G be a second-countable, locally-compact, r-discrete, essentially free, minimal
and locally-contracting groupoid. Then C∗

r (G) is purely-infinite.

November 8, 2022

Induced representations of groupoids
Speaker: Torstein Ulsnæs (SISSA & Leiden University)

The following notes come almost entirely from Torstein’s blog post. I wish to thank Torstein for kindly sharing me with the
source codes. I also apologise for making some modifications to fit his hard work into this document, and for changing some
symbols for consistency. — Y.Li

In this post, we collect some of the basic properties of induced representations of groupoid C*-algebras.
The main focus will be the full groupoid C*-algebra, and we barely mention the definition of unitary
representations of groupoids. In the sequel, unless stated otherwise, G will denote a second countable
locally compact Hausdorff groupoid with a Haar system λ.
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8.1 Induced representations finite groups

Given a subgroup of a finite group H ⊆ G, the group algebra CG has a natural right CH-action and a
left CG action, both by convolution. Any unitary representation u : H → B(Vu) can “induce” a unitary
representation of G by the following steps:

1. Extend u to a representation πu of CH given by the “integrated form”

πu(f) =
∫

G
f(g)u(g) dλ(G)

for all f ∈ Cc(G).
2. Extend πu to a representation of G on CG⊗CH Vu, endowed with the inner product

⟨f ⊗ v, f ′ ⊗ v′⟩ := ⟨πu(f∗ ∗ f)v, v′⟩

given by left multiplication of CG on CG.
3. Restrict this representation to G.

This is not the only way to induce representations from a subgroup to G. Parabolic inductions from
parabolic subgroups of reductive algebraic groups are one example, but also one could very well have
chosen any finite vector space with a (CG,CH)-bimodule structure in place of CG in the above process
and got a finite representation of G.

The choice of CG has many advantages though. To list a few — we know what the induced rep
resentations look like, we have a characterization of which of them are irreducible (by Machey’s machinery)
and we know that this particular choice of bimodule yields a functor adjoint to the very natural “restriction”
functor which sends a representation π of G to its restriction to H (Frobenius reciprocity theorem).

8.2 Unitary representations of groupoids

For groupoids howerver, the notion of unitary representations is somewhat convoluted at first glance. A
unitary representation of a groupoid G is defined to be a triple (µ,G(0) ∗H , L) where

• µ is a quasi-invariant measure on G(0), meaning λu × µ and λu × µ are equivalent measures on G,
where {λu}

u∈G(0) is the Haar system of G (recall that supp(λu) = Gu = {γ ∈ G | r(γ) = u}) and λu

is the pushforward of λu under inversion (so we have suppλu = Gu).

• G(0) ∗H is a Borel bundle, which is a type of measurable bundle of Hilbert spaces over G(0). See
[Wil19, Definition 3.32] for a precise definition.

• L is a Borel morphism of groupoids

L : G → Iso(G(0) ∗H ), L(γ) = (r(γ), Lγ , s(γ)),

where Iso(G(0) ∗H ) is the isomorphism groupoid of the Borel bundle, given by

Iso(G(0) ∗H ) := {(x, V, y) | V : Hx →Hy is unitary}.

Just like for ordinary groups, any representation of a groupoid C*-algebra can be written as the
integrated form of a unitary representation (see the Integration and Disintegration theorems of Renault).
Similar statements also hold for crossed products by groupoid actions.
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8.3 Induced representations of locally compact groups

Let H ⊆ G be a closed subgroup of a locally compact group G assumed (for ease of notation) to be
unimodular. The general case can be found in, for instance, [Ech17]. The space X0 = Cc(G) can be
equipped with a right pre-Hilbert Cc(H)-module structure with respect to the inner product

⟨f, g⟩H(h) =
∫

G
f(s−1)g(s−1h) ds.

The completion XG
H with respect to this inner product is a Hilbert C∗(H)-module on which C∗(G) acts

on the left by convolution.
Any representation π : C∗(H)→ B(Vπ) now induces a representation of C∗(G) via

C∗(G)→ XG
H ⊗π Vπ

in the same way as above. Note that we have used the internal tensor products of Hilbert C*-modules,
which means XG

H ⊗π Vπ is a Hilbert space completion of Cc(G) ⊗ Vπ with respect to the (possibly
degenerate) inner product

⟨f ⊗ v, f ′ ⊗ v′⟩ = ⟨π(⟨f, f ′⟩H)v, v′⟩π,

where ⟨−,−⟩π the inner product on Vπ.
When XG

H can be chose to be an imprimitivity bimodule (i.e. C∗(G) ≃ K(XG
H)), all unitary rep-

resentations of G can be induced from those of H. The imprimitivity theorem tells us which unitary
representations of G are induced from G. The short version of this theorem goes as follows. A unitary
representation u : G→ U(B(Vσ)) is induced from a unitary representation of H if and only if there is a
non-degenerate representation π : C(G/H)→ B(Vσ) such that (π, σ) is a covariant representation of the
dynamical system (C(G/H), G, U), meaning that

π(Ug(f)) = ugπ(f)u∗
g

with Ug(f)(x) := f(g−1x).

8.4 Induced representations of Groupoids

Let H ⊆ G be a closed subgroupoid of G with Haar systems {αu}
u∈H(0) and {λv}

v∈G(0) respectively.
For our groupoid G, however, we will replace Cc(G) by Cc(GH(0)), where

GH(0) = s−1(H(0)) = {γ ∈ G | s(γ) ∈ H(0)}.

Note that if G is a group, then G(0) is a single point, hence GH(0) = G. This is a closed subspace of G
containing H. The function algebra Cc(GH(0)) carries a right Cc(H)-action, a Cc(H)-valued inner product
and a left Cc(G)-action as follows. For f ∈ Cc(G), ϕ, ψ ∈ Cc(GH(0)), f ′ ∈ Cc(H), h ∈ H:

(f · ϕ)(ξ) =
∫

G
f(ξ)ϕ(γ−1ξ) dλr(ξ)(γ),

ϕf ′(ξ) =
∫

H
ϕ(ξh)f ′(h−1) dαs(ξ)(h),

⟨ϕ, ψ⟩∗(h) =
∫

G
ϕ(γ)ψ(γh) dλr(h)(γ).

Given a representation π : C∗(H)→ B(Vπ), we can form the Hilbert space VInd,π as the completion of
the pre-Hilbert space Cc(GH(0))⊗ Vπ with respect to the (possibly degenerate) inner product

⟨ϕ⊗ h, ψ ⊗ k⟩ := ⟨π(⟨ϕ, ψ⟩)h, k⟩.
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Now the induced representation

IndG
H π : C∗(G)→ B(VInd,π)

is determined by sending an f ∈ Cc(G) to the operator acting on ξ ⊗ v ∈ Cc(GH(0))⊗ Vπ ⊆ VInd,π by

(IndG
H π)(f)(ξ ⊗π v) = f · ξ ⊗π v.

In summary, other than the explicit realization of the imprimitivity correspondence XG
H, the process

of inducing representations from closed subgroupoids runs perfectly parallel to that of ordinary group
theory.

Recall that a full Hilbert C∗(H)-module X together with a non-degenerate *-homomorphism

ϕ : C∗(G)→ B(X)

is called a (C∗(G),C∗(H))-(C*)-correspondence. It is customary to think of C*-correspondences are
“generalized morphisms” C∗(G)→ C∗(H), and construct a category Corr whose objects are C*-algebras
and whose morphisms are (isomorphism classes of) correspondences. This is due to the fact that many
“rigidity results” and equivalences about groupoids translate only to assertions of Morita equivalence
of their corresponding C*-algebras (Morita equivalences are nothing but the isomorphisms in both
categories). See for instance Renault’s equivalence theorem [Ren80].

With this setup, one can see that if Rep(A) denotes the collection of unitary equivalence classes of
non-degenerate representations of a C*-algebra A, then

Rep(A) = HomCorr(A,C).

A C*-correspondence [X,ϕ] ∈ HomCorr(A,B) gives a map

X-Ind: Rep(B)→ Rep(A).

The composition is the internal tensor product of Hilbert C*-modules.
For more on induction of groups/ideals/C*-algebras and the correspondence category I highly

recommend [Cun+17, Chapter 2]. For more on internal tensor products and Hilbert modules the standard
reference is [Lan95].

We shall usually omit the C*-correspondence X when it is clear from the context and replace X-IndG
H

by IndG
H, or even by Ind when the groups are also clear.

Since the process of groupoid induction is so similar to that of groups, it should come as no surprise that
many properties translate word for word from group theory. Here we list some of the most fundamental,
all of which can be found in [Wil19] and proofs in the cited reference therein.

8.4.1 Direct sums

Let πi : C∗(H)→ B(Vi) be a collection of representations. Denote by ⊕iπi the direct sum representation.
Then for any C*-correspondence [X,ψ] : C∗(G)→ C∗(H), we have

X-IndG
H

(⊕
i

πi

)
=
⊕

i

X-IndG
H πi.

8.4.2 Kernels

Let [X,ϕ] : C∗(G)→ C∗(H) be a C*-correspondence. We can also induce ideals from C∗(G) to C∗(H) as
follows. If J ⊆ C∗(H) is an ideal then define

X-IndG
H J := {a ∈ C∗(G) | ⟨ax, y⟩H ∈ J, for all x, y ∈ X},

which is closed by Cohens factorization theorem. This turns out to be an ideal of C∗(G). With this
asignment we get the formula for any representation π : C∗(H)→ B(Vπ)

ker Ind(π) = Ind(ker(π)).
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8.4.3 Induction in stages

Let H ⊆ K ⊆ G be closed groupoids. Let [Y K
H , ϕ

H
K ] and [Y G

K , ϕ
G
K] be (C∗(K),C∗(H))- and (C∗(G),C∗(H))-

correspondences. Then with

[Y G
H , ψ] = [Y K

H , ϕ
G
K] ◦ [Y G

K , ϕ
H
K ] = [Y K

H ⊗ϕ
K
H
Y K

H , ϕ
G
K ⊗ 1],

together with a representation
π : C∗(H)→ B(Vπ).

The following holds:
Y K

H-Ind(Y G
K-Indπ) = Y G

H-Indπ.

In particular,
IndK

H(IndG
K π) = IndG

H π.

8.5 Some examples

8.5.1 Locally closed orbits

Let G be a transitive groupoid, i.e. acts transitively on its unit space G(0). This is quite similar to the
case of a group. Namely, let

Gu
u = {γ ∈ G | r(γ) = s(γ) = u}

be the isotropy group of u ∈ G(0). Since the action is transitive, the imprimitivity theorem gives us a
Morita equivalence between C∗(GU

U ) and C∗(G). In particular, all representations of C∗(G) are induced
from an(y fixed) isotropy group. For instance, if the action of G on G(0) has a trivial isotropy group,
then Prim(C∗(G)) is a point.

The representation theory of transitive groupoid C*-algebras hence often reduces to that of group
C*-algebras.

The above theorem holds if all orbits of G in G(0) are locally closed (meaning they are open in their
closure). Though, as we will see, one would have to pick at least one isotropy group from each orbit to
ensure all representations are reached.

8.5.2 Regular representations and the reduced C*-norm

The second examples are the “induced” regular representations (c.f. Definition 2.19)

Indµ : C∗(G)→ B(L2(G(0), ν−1)).

They are just the induced representations given by the regular representation

π : C∗(H)→ B(Vπ)

for H = G(0) and Vπ = L2(G(0), µ). In particular, if µ = δu is the Dirac measure supported on a
fixed u ∈ G(0). Then the inner product on Vπ is just

⟨f, f ′⟩ =
∫

G
f(γ)f(γu) dλr(u)(γ) =

∫
G
|f(γ)|2 dλu(γ).

So VInd,π is the completion of
Cc(G)⊗ L2(G(0), δu) ≃ Cc(G)

with respect to the inner product

⟨f ⊗ ϕ, f ′ ⊗ ϕ′⟩ : = ⟨π(⟨f, f ′⟩∗)ϕ, ϕ′⟩.
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Then VInd,π can be identified with L2(Gu, λu).
Now any representation of C*-algebra can be written as a (possibly infinite) direct sum of irreducible

representations. Using the fact that induction preserves direct sums, one can conclude that if ρ : C0(G(0))→
B(V ) is a faithful representation, then

|| IndG(0)

G ρ(f)|| ≤ ||f ||r.

If ρ is the regular representation described above, given by a Radon measure with full support on G(0).
Then

∥f∥r = ∥IndG(0)

G ρ∥.

8.5.3 Induction from groupoids with closed orbits

Assume now that F ⊆ G(0) is a closed G(0)-invariant subset of the unit space. One easily checks that

GF
F = {γ ∈ G | r(γ), s(γ) ∈ F}

is a subgroupoid of G. We will show that not all representations of G are of the form IndG
GF

F

π for some
representation of C∗(GF

F ), which (by induction in stages) implies not all are of the form IndG
GU

U

π for u ∈ F ).
To do this however, we will need some propositions. Let π be as above, then we define the associated M -

representation of π to be the representation Mπ satisfying, for every ϕ ∈ C0(H(0)) and f ∈ Cc(H)

M(ϕ)π(f) = π((ϕ ◦ r) · f),

where r is the range map of H and · is just pointwise multiplication. Explicitly we have

Mπ = π ◦ V

where
V : C0(G(0))→M(C∗(G)), ϕ 7→ (||ϕ||∞ − |ϕ|2)1/2.

(See [Wil19, Lemma 1.48]) and π is the extension of π to M(C∗(G)) (which is still non-degenerate!)
Having this at our disposal, one can define the support of π, to the closed subset of G(0) corresponding

to the ideal ker(Mπ), that is, support of π is the largest set C for which

{f ∈ C0(G(0)) | fC
C = 0} = ker(Mπ).

If Mπ is the usual multiplication representation on some measure space L2(G(0), µ), then the support
of Mπ is simply the support of µ, hence the name.

One should really think of the support map as something that determines the essential domain of π
as the following proposition of [Wil19] shows:

Theorem 8.1. Let π : C∗(G)→ B(Vπ) be any non-degenerate representation with supp(π) = F ⫋ G(0).
Then the subset F is closed and G-invariant, and the representation π factors through the (surjective) map

jG
F : C∗(G)→ C∗(GF

F )

induced by the inclusion GF
F ↪→ G.

Proof. The proof is rather obvious if one believes that if U = G(0)\F is the complement of F then Cc(GU
U )

is dense in ker(jG
F ). But this is always the case, as the inclusion Cc(G|U )→ Cc(G) sits in a short exact

sequence
0→ C∗(GU

U )→ C∗(G)→ C∗(GF
F )→ 0.
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So it suffices to check that Cc(GU
U ) ⊆ ker(jG

F ). To show this, pick a ϕ ∈ Cc(U) such that (ϕ ◦ r)f = f (i.e.
a bump function which is one on all x ∈ G(0) where f(γ) ̸= 0 for some γ with r(γ) = 1). Then using the
formula for the associated M -representation above we have

M(ϕ)π(f) = π((ϕ ◦ r)f) = π(f).

but M(ϕ) = 0 since the support is F .

The converse of the above proposition is also true, meaning, if π factors through jG
F , then the

support of π must be contained in F . Similarly one can say something about the support of an induced
representation, as the following proposition from [Wil19] and its corollaries show.

Proposition 8.2. Let G be a groupoid. Let H ⊆ G be a closed subgroupoid. Let F ⊆ H(0) be a closed H-
invariant subset. Let π : C∗(H)→ B(Vπ) be a non-degenerate representation with supp(π) ⊆ F . Let E is
a closed G-invariant set such that F ⊆ E ⊆ G(0). Then as in the previous proposition π factors as π ◦ jH

F

and we have
IndG

H π = IndG
H(π ◦ jH

F ) = IndGE
E

HF
F

(π) ◦ jG
E .

Note that the above proposition simplys says, if a representation is induced from a representation
with support F ⊆ H(0) then the support of the induced representation must be contained in the G-orbit
of GF ⊆ G(0).

The proof is not very glamorous so we opt to leave it out, but just mention that the map implementing
the isomorphism is the restriction map

r : Cc(GH(0))→ Cc(GF
E ).

Interested readers can consult [Wil19, Chapter 5.6] for the proof.

8.5.4 Amenable groups

There is a beautiful theorem which states that given a surjective morphism f : G→ G′ of locally compact
groups such that N = ker(f) is amenable, then f induces a morphism of the C*-algebras

f : C∗
r (G)→ C∗

r (G′).

In general one cannot assume the range of f(C∗
r (G)) is contained in C∗

r (G) (or in C∗(G)).
The reason this holds for amenable kernels is the following. Since N is amenable, C∗

r (N) = C∗(N).
So every unitary representation lifts to C∗

r (G), hence also the trivial representation 1N : N → C. Note
that we have a unitary equivalence between the representations

IndG
N 1N ∼ λG/N ,

where λG/N denotes the regular representation of G/N .
Since induced representations preserve weak containment, we have ker(λN/G) ⊆ ker(λG) hence f∗

induces a map
f∗ : C∗

r (G)→ C∗
r (G′),

since G′ = G/N .

November 15, 2022

Existence and uniqueness of Haar systems
Speaker: Malte Leimbach (Radboud University Nijmegen)

The main reference for this talk is [Wil19, Chapter 6].
Throughout this talk, a groupoid always refers to a locally-compact Hausdorff topological groupoid.
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9.1 Existence of Haar systems on second-countable groupoids

We start with a slight generalisation of Haar systems called π-systems.

Definition 9.1. Let π : Y → X be a continuous surjective maps between locally-compact spaces.

• A π-system is a family {βx}x∈X of positive Radon measures on Y , such that

(πS0) supp(βx) ⊆ π−1(x).
(πS2) For any f ∈ Cc(Y ), the map

x 7→ β(f)(x) :=
∫

Y
f(y) dβx(y)

is continuous.

• We say a π-system is full, if

(πS1) supp(βx) = π−1(x).

• If in addition X and Y are G-spaces for a groupoid G. We say a π-system is G-equivariant, if

(πS3) For all f ∈ Cc(Y ) and γ ∈ G, the following holds:∫
Y
f(γy) dβx(y) =

∫
Y
f(y) dβγxy.

Example 9.2. A Haar system of a groupoid G is a full, G-equivariant π-system for π := r : G → G(0) and
the obvious actions G ↷ G and G ↷ G(0). Compare Definition 2.3.

If a groupoid has a Haar system. Then the range and source maps are open. There are groupoids
whose source and range maps are not open (e.g. Example 2.13), this means that not all groupoids admit
a Haar system. In particular, an r-discrete groupoid admits a Haar system iff it is étale. Then we may
ask if the converse statement holds. That is:

Question 9.3. If G is a groupoid with open range and source maps. Does G always admit a Haar system?

Anton Deitmar proposed the following counterexample.

Lemma 9.4. Let X be a locally-compact Hausdorff space. Then the pair groupoid X ×X ⇒ X admits a
Haar system iff there is a full Radon measure on X.

Example 9.5 ([Dei18]). Let X be the one-point compactification of an uncountable discrete set D.
Suppose X possessed a full Radon measure µ. Then µ({d}) > 0 for any d ∈ D. This implies µ(X) = +∞,
which is a contradiction. Therefore, X does not have a full Radon measure and X ×X ⇒ X does not
admit a Haar system.

The space X in the counterexample above is quite pathological: it is not second-countable. If X
is second-countable, then there are always full Radon measures on X. Anton Deitmar proposed the
following more realistic conjecture.

Conjecture 9.6 ([Dei18]). If G is a second-countable groupoid with open range and source maps. Then G
has a Haar system.

We do not have an affirmative answer to the existence of a Haar system on a second-countable
groupoid in general. However, in the special case of groupoid group bundles, Renault proved that when
they are second-countable with open range and source maps, then they admit Haar systems.

Definition 9.7. A groupoid group bundle is a groupoid G whose range map r and source map s coincides.
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Theorem 9.8 ([Ren91, Lemma 1.3]). A second-countable groupoid group bundle with open range and
source maps admits a Haar system.

For the proof, we need the following technical definitions and lemma.

Definition 9.9. • Let G be a groupoid. A subset D ⊆ G is diagonally compact, if for any compact
subset K ⊆ G(0), the orbit of K in G(0) under the left and right actions G ↷ G(0) and G(0) ↶ G are
compact.

• Let π : Y → X be a continuous surjection. A subset A ⊆ Y is π-compact, if A∩ π−1(K) is compact
for all compact subsets K ⊆ X.

• Denote by c(N) the subspace of Cauchy sequences in ℓ∞(N). A generalised limit is a state on ℓ∞(N)
which extends the limit functional

lim: c(N)→ C, (xn)n∈N 7→ lim xn.

Lemma 9.10. Let G be a second-countable groupoid. There exists a diagonally compact neighbourhood
of G(0) in G.

Lemma 9.11. Let (xn)n∈N ∈ ℓ
∞(N). If there exists x ∈ C such that Λ((xn)n∈N) = x for all generalised

limit Λ. Then (xn)n∈N is Cauchy and xn → x.

Idea of the proof. Let G be a groupoid group bundle. Let N be a diagonally compact neighbourhood
of G(0). Let f0 be a non-negative continuous function on G such that

f0|G(0) = 1 and supp(f0) ⊆ N.

Notice that supp(f0) is r-compact.
For any u ∈ G(0), let λu be the Haar measure on Gu

n = Gu = Gu such that∫
Gu

u

f0(t) dλut = 1.

We claim that {λu}
u∈G(0) is a Haar system on G. (HS1) and (HS3) of Definition 2.3 are easy. The difficult

part is (HS2). That is, the map
u 7→

∫
Gu

u

f(t) dλu(t)

is continuous, for all f ∈ Cc(G). We prove in steps.

1. Show that the map u 7→ λu(K) is bounded for any compact subset K ⊆ Gu
u .

2. Since G is second-countable. Choose a sequence {un}n∈N approaching u. For any f ∈ Cc(G), define
the map

f̃ : N→ C, f̃(n) :=
∫

Gun
un

f(t) dλun(t).

Since u 7→ λu(K) is bounded, we have f̃ ∈ ℓ∞(N).
3. Let Λ be a generalised limit. Define

µ(f) := Λ(f̃).

Then µ is a positive linear functional on Cc(G) which is supported on Gu
u . So we may view µ as a

positive linear functional on Cc(Gu
u).

4. Show that µ is left-invariant, hence a Haar measure on G.
5. Show that µ = λu.
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9.2 Haar systems on equivalent groupoids

Until the end of this lecture, all spaces are assumed to be second-countable.
We will prove the following theorem:

Theorem 9.12 ([Wil16]). Every second-countable groupoid, which is Morita equivalent to a second-
countable groupoid with a Haar system, admits a Haar system.

Lemma 9.13 (Blanchard). Let π : Y → X be a continuous surjection. Then π is open iff Y admits a
full π-system.

Definition and Lemma 9.14. Let π : Y → X be a continuous open surjection. Then there is a
non-negative function ϕ ∈ C(Y ) such that supp(ϕ) is π-compact and π({y ∈ Y | ϕ(y) > 0}) = X. Such a
function ϕ is called a Bruhat section of π : Y → X.

Recall that

Definition 9.15. Let G be a groupoid. Let Z be a free and proper left G-space. The imprimitivity
groupoid of Z is defined as

GZ := G\Z ∗r Z ⇒ G\Z.

Lemma 9.16 ([Wil19, Lemma 2.44]). If Z is a (G,H)-equivalence. Then H ≃ GZ .

Lemma 9.17 (Kumjian–Muhly–Renault–Williams). Let Z be a (G,H)-equivalence. Then H admits a
Haar system iff Z admits a full, G-equivariant rZ-system, where rZ : Z → G(0) is the moment map.

Proof. Use H ≃ GZ and [Wil19, Lemma 3.16].

Proposition 9.18. Let G be a second-countable, locally-compact Hausdorff groupoid with a Haar sys-
tem {λu}

u∈G(0) . Let Z be a proper G-space, not necessarily free. Assume that the moment map rZ : Z →
G(0) is open. Then there is a full G-equivariant rZ-system for Z.

Proof. Let π : Z → G\Z be the orbit projection. It is a continuous, surjective open map. Let f ∈ C(Z) be a
Bruhat section for π. Let {βu}

u∈G(0) be a full rZ-system. Define a collection of Radon measures {νu}
u∈G(0)

via
νu : Cc(Z)→ C, νu(f) :=

∫
G

∫
Z
f(γz)ϕ(z) dβs(γ)(z) dλu(γ).

We check that {νu}
u∈G(0) is a Haar system. (πS1) and (πS2) are clear. For the equivariance (πS3), we

have ∫
Z
f(ηz) dνs(η)(z) =

∫
G

∫
Z
f(ηγz) dβs(γ)(z) dλs(η)(γ)

=
∫

G

∫
Z
f(γz)ϕ(z) dβs(γ)(z) dλr(η)(γ)

=
∫

Z
f(z) dνr(η)(z).

For the second equality we use the fact that {λu}
u∈G(0) is a Haar system, so (HS3) follows. This finishes

the proof that {νu}
u∈G(0) is a G-equivariant rZ-system.

9.2.1 Examples

Example 9.19. Every second-countable, proper (i.e. G ↷ G(0) properly) and principal groupoid admits a
Haar system. In fact, G(0) implements an equivalence between G ⋉ (G(0)/G(0)) ≃ G and (G\G(0)) ⋊ G(0) ≃
G\G(0). Since the orbit space G\G(0) admits a Haar system trivially (i.e. the pointwise Dirac measure), G
admits a Haar system as well.
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Example 9.20. Every transitive (i.e. G ↷ G(0) transitively) groupoid admits a Haar system because G ∼Morita
Gu

u for any u ∈ G(0).
Example 9.21. Recall that G[Z] ∼Morita G. So G[Z] allows for a Haar system if G does.

Example 9.22. Let G be a groupoid. A subgroupoid H ⊆ G is wide if H(0) = G(0). If G has a Haar system
and rH is open, then H has a Haar system: notice that H ≃ G ⋉ G/H ([Wil19, Corollary 2.50]) and that
if G has a Haar system, then G ⋉ G/H also has ([Wil19, Exercise 2.1.7]).
Example 9.23. Let G be a groupoid and Z be a free and proper G-space. Assume that rZ is open. Then Z
implements a (G,GZ)-equivalence. If G has a Haar system. Then GZ has a Haar system, too.

November 22, 2022

Inverse semigroups and groupoids
Speaker: Jack Ekenstam (Leiden University)

The main references of this talk are [Kum84; Pat99].
Our main goal is to show that an étale groupoid can be viewed as an action groupoid coming from an

inverse semigroup action on a space.

Definition 10.1. A semigroup is a set S together with an associative binary operation. A semigroup S
is called an inverse semigroup if for all s ∈ S, there exists a unique element s∗ ∈ S with

s∗ss∗ = s∗, ss∗s = s.

Example 10.2. Let X be a locally-compact Hausdorff space. The set of partial homeomorphisms — that
is, homeomorphisms U ∼−→ V between open sets U, V ⊆ X — is an inverse semigroup.

Definition 10.3. A localisation is a pair (X,S) where X is a locally-compact Hausdorff space, and S is
a countable inverse semigroup acting on X by partial homeomorphisms {αs}s∈S , such that the domains
of αs’ form a topological basis for X.

Example 10.4. A localisation is given as follows. Let Y ⇒ X be a covering space, but with two covering
maps π1 abnd π2. Take the trivialising covers {Ui} and {Vj} for π1 and π2, and then set Wij := Ui∩Vj ⊆ Y .
Define αij : π1(Wij)→ π2(Wij) by first lifting to Y using π−1

1 , then projects back to X using π2.
Example 10.5. Let G be an étale groupoid. Denote by Bis(G) the set of local bisections of G. This
is an inverse semigroup. Let S be a countable inverse subsemigroup of Bis(G). Then S acts on G(0)

via x · s := s∗xs.1 In particular, the idempotents of S form a basis for the topology of G(0).
Let (X,S) be a localisation. Let U ⊆ X be an open subset. Then C0(U) ⊆ C0(X) is an ideal. In

particular, for each s ∈ S with domain Dom s, C0(Dom s) is an ideal of C0(X). Define the map

γs : C0(Dom s∗)→ C0(Dom s), γs(f)(x) := f(x · s).

Now we may proceed with the noncommutative setting. Assume for simplicity that A is a unital C*-
algebra. An inverse semigroup S acts on A by local *-isomorphisms. That is, *-isomorphisms αs : Es → Es

∗

where Es, Es
∗ are closed ideals of A. We call (A,S) a covariant system.

We wish to describe a crossed product “A⋊ S”. Consider the space

C(A,S) := {θ : S → A | θ(s) ∈ Es for all s and θ has finite support}.
1This is actually an partial anti-homeomorphism. Since the duality between spaces and C*-algebras is contravariant, this

allows us to work with local *-isomorphisms of C*-algebras instead of anti-isomorphisms.
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It is spanned by the space
{(a, s) ∈ C(A,S) | (a, s)(t) = aδs,t}.

We may a *-algebra structure via

(a, s)(b, t) := (s[(s∗a)b], st), (a, x)∗ := (s∗a∗, s∗),

and extends to the whole of C(A,S).
It suffices to define a C*-norm for C(A,S) and complete it into a C*-algebra. How to do that?

10.1 Representation of covariant systems

Definition 10.6. A covariant representation of a covariant system (A,S) is a pair (ϕ, π), where:

• ϕ is a *-representation A→ B(H ) on a Hilbert space H ;
• π is a representation of S on H by partial isometries,

such that:

• For all s ∈ S, Dom π(s) = ϕ(Es
∗)H .

• For all a ∈ Es
∗ , π(s∗) = ϕ(γs(a)).

Definition 10.7. A representation of C(A,S) is a non-degenerate *-representation Φ of C(A,S) such
that Φ(a, e1) = Φ(a, e2) for all idempotents e1, e2.

Proposition 10.8. There is a 1-1 correspondence between

Covariant representations of (A,S) and representations of C(A,S).

Proof. If (ϕ, π) is a covariant representation of (A,S) on H . Define

Φ: C(A,S)→ B(H ), Φ(b, s) := ϕ(b)π(s)

for (b, s)(t) := bδs,t. This is a representation of C(A,S).
Conversely. Let Φ be a representation of C(A,S). We claim that there exists a covariant representa-

tion (ϕ, π) of (A,S) such that Φ(b, s) = ϕ(b)π(s). This is given by ϕ(a) := Φ(a, e) and π(s) := Φ(1, s) for
any idempotent e. We omit the proof.

Let θ ∈ C(A,S). Define

∥θ∥ := sup{Φ(θ) | Φ is a representation of C(A,S)}.

This might only be a semi-norm. So we need to divide by N := {θ ∈ C(A,S) | ∥θ∥ = 0} and set

A⋊ S := C(A,S)/N∥·∥
.

There is still something to be careful with. Namely, we need to have enough representations for C(A,S),
which is not assured in general. But in the case of étale groupoids, such a representation is obtained by
the induced representations of groupoids, and we do have enough representations to obtain a C*-norm
and a C*-algebra.
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10.2 Étale groupoid C*-algebras as inverse semigroup crossed products

Theorem 10.9. Let G be an étale groupoid. Let S be a countable “additive” inverse subsemigroup
of Bis(G). Additivity means

If A,B ∈ S satisfy A ∪B ∈ Bis(G). Then A ∪B ∈ S.

Then (C0(G(0)), S) is a covariant system, and C∗(G) ≃ C0(G(0)) ⋊ S.

Conversely. Let X be a space and S be an inverse semigroup acting on X by partial (anti)-
homeomorphisms. We want to construct a groupoid such that its C*-algebra is isomorphic to C0(X) ⋊ S.
Obvious attempt is

Ξ := {(x, s) ∈ X × S | s ∈ S, x ∈ Dom s}⇒ Ξ(0) := X

with
s(x, s) := x, r(x, s) := x · s, (x, s)−1 := (x · s, s∗).

But this forces (x, s) = (x, stt∗) which is not true in general.
This happens precisely because composing partial homeomorphisms will contract the domains. To

solve this, we need to replace Ξ by a quotient of it.
Define the equivalence relation ∼ on Ξ:

(x, s) ∼ (y, t) iff x = y and there exists an idempotent e ∈ S such that x ∈ Dom e and es = et.

Set
G(X,S) := Ξ/∼ .

Easily one shows that this is a groupoid.
Let (X,S) be a localisation. Define an equivalence relation on S:

s ∼ t iff ss∗ = tt∗, and for all x ∈ Dom ss∗, there exists an idempotent e ∈ S such that x ∈ Dom e
and es = et.

Definition 10.10. A localisation (X,S) is additive if the followings hold:

1. s ∼ t implies s = t.
2. If s and t are compatible (that is, Dom s ∩ Dom t ̸= ∅ and s = t on Dom s ∩ Dom t), and f =
ss∗ ∪ tt∗ ⊆ X. Then there exists w ∈ S such that f = ww∗ and x ∈ Dom ss∗, such that there exists
an idempotent e ∈ S with x ∈ Dom e and es = ew.

Theorem 10.11. If (X,S) is an additive localisation. Then C∗(G(X,S)) ≃ C0(X) ⋊ S.

November 29, 2022

Tangent groupoids and index theory
Speaker: Yuezhao Li (Leiden University)

The main references are [Con94; Lan03]. Some useful computation is carried over in [Hig10].

43



11.1 Overview

11.1.1 What is index theory?

An index theorem, roughly speaking, is an equation of the form:

Analytic index = Topological index.

Index theory is diverse in scope now, but at the very beginning people were concerned with the index of
an elliptic operator on a manifold. An elliptic operator is, roughly speaking, a Fredholm operator. The
analytic index of an elliptic operator P is just its Fredholm index

Index(P ) := dim kerP − dim cokerP.

It is known for long that the Fredholm index of a bounded Fredholm operator is in some sense “topological”:
it is invariant under homotopies inside the space of Fredholm operators (equipped with the subspace
topology from bounded operators). Then Gelfand questioned whether there is a certain “topological”
formula for the index of an elliptic operator. The answer is the well-known Atiyah–Singer index theorem.

Theorem 11.1 (Atiyah–Singer). Let P be an elliptic operator on a closed manifold M . Then

a-ind(P ) = t-ind(P ),

where

a-ind(P ) := Index(P );
t-ind(P ) := {Ch(σ(P )) ∪ Td(π∗TX ⊗ C)}[T ∗M ].

Here σ(P ) is the principal symbol of P , Ch(σ(P )) ∈ Heven(T ∗X) is the class in even cohomology associated
to the Chern character of σ(P ), Td(π∗TM ⊗C) is the Todd class of the complex vector bundle π∗TM ⊗C,
and [T ∗M ] is the fundamental class in the top cohomology of T ∗M .

Example 11.2. 1. If P = d + d∗ : C∞(M,ΛevenT ∗M)→ C∞(M,ΛoddT ∗M). Then Atiyah–Singer index
theorem recovers Gauß–Bonnet theorem.

2. If P = ∂ + ∂
∗ : C∞(M,ΛevenT 1,0M) → C∞(M,ΛoddT 1,0M). Then Atiyah–Singer index theorem

recovers Riemann–Roch theorem.
A complete statement of this whole story will consume several hours. So I only sketch the essential

ingredients for understanding this result. Atiyah and Singer already realised that both the analytic and
topological indices ought to be understood as a group homomorphism

K(T ∗M)→ Z

from the K-theory of the topological space T ∗M to the integers.
Let P be an elliptic operator on a closed manifold M . This means, P is a linear map

P : C∞(M,E)→ C∞(M,E)

acting on the smooth sections of a vector bundle E →M , satisfying some extra conditions. With these
extra conditions, P is a pseudo-differential operator. Denote the set of pseudo-differential operators
by Ψ(M,E). The symbol of P is an element σ(P ) ∈ C(T ∗M,Mn(C)). Being elliptic means that σ(P ) is
invertible outside the zero section of T ∗M . Then σ(P ) represents a class in K(T ∗M). Atiyah and Singer
showed that the Fredholm index Index(P ) depends only on the class of σ(P ) inside K(T ∗M). So the
analytic index is a map

a-ind: K(T ∗M)→ Z, [σ(P )] 7→ Index(P ). (3)
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The topological index needs a another machineary called Thom isomorphism. If V → X is a complex
vector bundle, then there is an isomorphism

K(X) ≃ K(V ).

Consider a proper embedding M ↪→ Rn. The tubular neighbourhood theorem claims that there is a
tubular neighbourhood N of M in Rn, such that N is homeomorphic to the normal bundle of M in Rn.
Identify N with the normal bundle of M in Rn. Then T ∗N is a vector bundle over T ∗M which allows a
complex structure. So the Thom isomorphism follows and we have

K(T ∗M) ≃ K(T ∗N).

Since T ∗N is an open subset in Rn. There is an “extension by 0” (or excision) map T ∗N ↪→ T ∗Rn which
induces a map K(T ∗N) → K(T ∗Rn) in K-theory. Composing with the Thom isomorphism and Bott
periodicity K(T ∗Rn) ≃ K(pt) ≃ Z yields the topological index map

t-ind: K(T ∗M) Thom isomorphism−−−−−−−−−−−−→
∼

K(T ∗N) excision−−−−−→ K(T ∗Rn) Bott periodicity−−−−−−−−−−→
∼

K(pt) ≃ Z. (4)

Atiyah–Singer index theorem can be rephrased as follows:
Theorem 11.3. The following diagram commutes:

K(T ∗Rn)

K(T ∗M) Z

Ψ(M,E)

≃Thom

σ Index

The proof due to Atiyah and Singer is based on the strategy that there is a unique such map satisfying
the properties of both indices. This is an elegant proof, but have some tiny drawbacks.

• It is not conceptually clear why the analytic index should also be viewed as a map K(T ∗M)→ Z. To
show this one has to prove that the analytic index depends only on the symbol, and that determines
a class in K(T ∗M).

• The topological index depends on an embedding of M into Rn and on the Thom isomorphism.
Both are inevitable even in the modern proofs of Atiyah–Singer index theorem, but this original
construction is not natural.

Question 11.4. Is there a natural way to realise both the analytic and the topological indices?

I believe that Alain Connes introduced his tangent groupoids with these doubts in mind. He sketched
a very elegant proof in [Con94, Section II.5] of the Atiyah–Singer index theorem based on this beautiful
construction.

11.1.2 Quantisation

Another interesting motivation for the tangent groupoid comes from physics: the quantisation. The
subject of C*-algebraic deformation quantisation (also called strict deformation quantisation) started
after Rieffel’s work [Rie89]. The relation between quantisation and the tangent groupoids is surveyed in
[Lan03].

Let M be a manifold describing the physical space. Classical physics and quantum physics describe
the physics on M using different mathematical frameworks, described in the table below.

A quantisation is a certain way to bridge the two mathematical frameworks. A C*-algebraic deforma-
tion quantisation is a choice of quantisation. In this approach, we try to find a “deformation” from the
C*-algebras C0(T ∗M) to a suitable C*-subalgebra of B(L2(M)). The following well-structured definitions
comes from [Ger16].

45



State space Observables Physical quantities

Classical physics Poisson manifold
T ∗M

f ∈ C0(T ∗M,R) f(x)

Quantum physics Hilbert space
L2(M)

Self-adjoint operator
T on L2(M) ⟨ψ, Tψ⟩

Table 1: Comparision between classical physics and quantum physics

Definition 11.5. Let X be a locally-compact Hausdorff space. A continuous field of C*-algebras over X
consists of:

• a C*-algebra A;
• a family of C*-algebras {Ax}x∈X indexed by X;
• a family of *-homomorphisms {πx : A→ Ax}x∈X indexed by X,

such that for all a ∈ A:

1. the map x 7→ ∥πx(a)∥ is in C0(X);
2. ∥a∥ = supx∈X∥πx(a)∥;
3. for all f ∈ C0(X), there exists an element a′ ∈ A such that πx(a′) = f(x)πx(a) for all x ∈ X.

Definition 11.6 ([Lan03; Rie89]). A C*-algebraic quantisation of a Poisson manifold P consists of the
following data:

1. A continuous field of C*-algebras A = (At)t∈[0,1] over [0, 1] with A0 = C0(P ).
2. A Poisson algebra A0 dense in A0.
3. A section Q : A0 → A satisfying

Q0(f) = f, Qt(f∗) = Qt(f)∗, lim
t→0

∥∥∥∥ it [Qt(f), Qt(g)]−Qt({f, g})
∥∥∥∥ = 0

for all f, g ∈ A0. Here Qt := πt ◦Q.

Recall that an elliptic operator P on a closed manifold M generates a symbol σ(P ) ∈ C0(T ∗M,Mn(C)).
It is attempting to regard σ(P ) as a classical observable. Then we are motivated to study a suitable defor-
mation quantisation for the manifold T ∗M . The Weyl–Moyal quantisation aims at quantising C0(T ∗M)
with a continuous field of C*-algebra (At)t∈[0,1] such that A0 = C0(T ∗M) and At = K(L2(M)) for t > 0.
Since K0(K(L2(M))) ≃ Z. We would wish to have a map K0(A0) → K0(A1) which recovers the
Atiyah–Singer index map.

Question 11.7. What is C*-algebraic quantisation involved here? Namely, what is the C*-algebra A?
How could we recover the map K0(A0)→ K0(A1)?

It turns out that:

• The C*-algebra A in this quantisation is the groupoid C*-algebra of the tangent groupoid TM .
• The tangent groupoid TM is a special case of a deformation groupoid. A deformation groupoid has

a deformation index, which in the case of tangent groupoids recovers the Atiyah–Singer analytic
index.
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11.1.3 Tangent groupoids

Definition 11.8. A Lie groupoid is a groupoid G
r
⇒
s
G(0) such that G and G(0) are smooth manifolds, the

multiplication and inverse maps are smooth, and the range map r and the source map s are submersions.
Definition 11.9. A deformation groupoid is a Lie groupoid of the form

G1 × {0}
∐
G2 × (0, 1] ⇒ G(0) × [0, 1],

where G1 ⇒ G(0) and G2 ⇒ G(0) are Lie groupoids over the same unit space G(0).
Roughly speaking, a deformation groupoid should be thought of as glueing two Lie groupoids together

along the interval [0, 1], in a smooth way.
Definition 11.10. Let M be a closed manifold. The tangent groupoid TM is the deformation groupoid
of the tangent bundle TM ⇒M and the pair groupoid M ×M ⇒M . That is,

TM := TM × {0}
∐

M ×M × (0, 1] ⇒M × [0, 1].

Clearly TM and M ×M are Lie groupoids. We need to make sure that TM is a Lie groupoid. The
smooth structure of TM is obtained as follows. Choose any Riemannian metric on M . Require that the
map

TM × [0, ϵ] → TM
(x, v, 0) 7→ (x, v, 0)
(x, v, t) 7→ (x, expx(−tv), t), for t > 0

to be a diffeomorphism for small enough ϵ. This is possible because we may find an open neighbourhood
of each x ∈ M and ϵx > 0 such that the exponential map is a diffeomorphism onto the image. The
compactness of M then allows us to find finite many such neighbourhoods and ϵ > 0 as a infimum of all
such ϵx. This also gives a topology to TM .

11.2 The index theorem in tangent groupoids

11.2.1 The analytic index

Now we reformulate the indices using the language of the tangent groupoids, and prove the index theorem
in this framework.
Definition and Lemma 11.11. Let G := G1 × {(0)}∐G2 × {(0, 1]}⇒ G(0) × [0, 1] be a deformation
groupoid. Then there is a short exact sequence of C*-algebras

C∗(G2 × (0, 1]) ↣ C∗(G)
ev0
↠ C∗(G1).

In particular, the C*-algebra C∗(G2 × (0, 1]) ≃ C∗(G2) ⊗ C0(0, 1] is contractible. So there is a KK-
equivalence [ev0] ∈ KK(C∗(G),C∗(G1)) and an isomorphism [ev0] : K∗(C∗(G)) ∼−→ K∗(C∗(G1)).

The deformation index associated to the deformation groupoid G is the element

[ev0]−1 ⊗ [ev1] ∈ KK(C∗(G1),C∗(G2)),

or the map

K∗(C∗(G1)) [ev0]−1

−−−−→ K∗(C∗(G)) [ev1]−−−→ K∗(C∗(G2)).
In the case of tangent groupoids. We have a map

a-ind: K0(C∗(TM)) [ev0]−1

−−−−→ K0(C∗(TM)) [ev1]−−−→ K0(C∗(M ×M)). (5)

Notice that C∗(TM) ≃ C0(T ∗M) (this is Poincaré duality in KK-theory), and C∗(M ×M) ≃ K(L2(M)).
The map (5) can thus be identified with a map K(T ∗M) = K0(C0(T ∗M))→ K0(K(L2(M))) ≃ Z.
Proposition 11.12 ([MP97]). The map (5) coincides with the Atiyah–Singer analytic index (3).
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11.2.2 The topological index

How about the topological index? We need to utilise Thom isomorphism K(T ∗M) ≃ K(T ∗N) in an
essential fashion, so as to send K(T ∗M) to K(T ∗Rn). For this purpose let us have a closer look at T ∗N .
The following discussion is ad hoc but points out a correct direction.

Since N is an open subset of Rn. We have T ∗N ≃ N ×Rn. Identify N with the normal bundle of M .
Then

N =
∐

x∈M

Nx ≃
∐

x∈M

TxR
n/TxM =

∐
x∈M

Rn/TxM.

(Here ∐ only denotes the set-theoretic union).
Then

T ∗N ≃ N × Rn ≃
∐

x∈M

Rn/TxM × Rn ≃
∐

x∈M

R2n/TxM.

This indicates us that, we should view T ∗N as the quotient of R2n under a suitable action of the
groupoid TM , or rather TM . We make this precise.

Let j : M ↪→ Rn be a proper embedding. Extend to j : M ↪→ T ∗Rn ≃ R2n via x 7→ (j(x), 0). This
induces a groupoid homomorphism

h : TM → R2n

h(x, v, 0) := j∗(v)

h(x, y, t) := 1
t

(j(x)− j(y)) for t > 0.

We want to define an action of TM on R2n using h. Groupoid actions are fibred. So we need
to replace R2n by the fibred space TM (0) × R2n = M × [0, 1] × R2n. The tangent groupoid TM acts
on TM (0) × R2n by

γ · (s(γ), v) := (r(γ), v + h(γ)).

This is a free and proper action. Hence the action groupoid TM ⋉ (TM (0) ×R2n) is Morita equivalent to
the orbit space

TM\TM (0) × R2n.

What is the orbit space?

• At t = 0. The action is given by

TM ↷M × R2n, (x, a) v∈TxM7−−−−−→ (x, j∗(x) + a).

The fibre orbit space at x is just Nx × Rn. So the total space is N × Rn ≃ TN .
• At t > 0. The action is given by

M ×M ↷M × R2n, (x, a) (y,x)∈M×M7−−−−−−−−→ (y, a).

The action is transitive on the M entry, and leaves the R2n entry unchanged. So the orbit space
is R2n.

Hence the orbit space is TN × {0}∐R2n × (0, 1]. This is a special case of the deformation of normal
cone.

The groupoids TM ⋉ (TM (0) × R2n) and TM\TM (0) × R2n are Morita equivalent. So they have
Morita–Rieffel equivalent C*-algebras and isomorphic K-theory

K0(TM ⋉ (TM (0) × R2n)) ≃ K0(TM\TM (0) × R2n).

Connes observed that:

48



Lemma 11.13 (Connes). Let α be the action Rn ↷ C∗(TM) given by

αXf(γ) := ei(X·h(γ))f(γ).

Then the crossed product C∗(TM) ⋊α R2n is isomorphic to C∗(TM ⋉ (TM (0) × R2n)).

The lemma, together with Connes–Thom isomorphism

K0(C∗(TM)) ⋊α R2n ≃ K0(C∗(TM)),

provides an isomorphism

K0(C∗(TM)) ≃ K0(TN × {0}
∐

R2n × (0, 1]). (6)

This isomorphism will be used in the proof of the index theorem.
Now we are able to describe the topological index as follows.

• Since the space R2n×(0, 1] is properly contractible. We have an isomorphism in K-theory K0(TN) ≃
K0(TN × {0}∐R2n × (0, 1]).

• The excision K0(C0(TN)) → K0(C0(R2n)) then defines a map K0(TN × {0}∐R2n × (0, 1]) →
K0(C0(R2n)). Let us denote this map by [ev1].

• The isomorphism (6) composed with [ev1] yields a map K0(C∗(TM))→ K0(C0(R2n)).
• Composed with the isomorphism [ev0] : K0(C0(T ∗M)) ≃ K0(C∗(TM)) ∼−→ K0(C∗(TM)), we obtain

the following map

t-ind := K0(C0(T ∗M)) ≃ K0(C∗(TM)) [ev0]−1

−−−−→
∼

K0(C∗(TM))
(6)−−→
∼

K0(TN × {0}
∐

R2n × (0, 1]) [ev1]−−−→ K0(C0(R2n)) ≃ Z. (7)

Proposition 11.14. The Atiyah–Singer topological index (4) coincides with the map (7).

11.2.3 Proof of the index theorem

The proof of the index theorem is therefore quite tautological, once we have identified the analytic and
topological indices with the correct maps in the tangent groupoid.

Proposition 11.15. The following diagram commutes:

K0(C∗(TM)) K0(C∗(TM)) K0(C∗(M ×M))

K0(C0(TN)) K0(C0(TN × {0}∐R2n × (0, 1]) K0(C0(R2n))

∼

[ev0]−1 [ev1]

∼ ∼

[ev0]−1 [ev1]

(8)

The vertical isomorphisms are: Thom isomorphism, the isomorphism in (6) and the isomorphism K0(C∗(M×
M)) = K0(K(L2(M))) ∼−→ K0(C) ∼−→ K0(C0(R2n)).

Finally, the Atiyah–Singer index theorem is proved by noticing that the analytic index is just the
composition of maps on the first row, while the topological index is the map K0(C∗(TM)) ∼−→ K0(C0(TN))
followed by the maps on the second row.

Theorem 11.16. a-ind = t-ind, where a-ind is defined as in (5) and t-ind is defined as in (7).
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December 6, 2022

Groupoids of iterated function systems
Speaker: Adam Rennie (Wollongong University)

“Groupoids Suck Slightly More Than Everything Else”.
When we start to look closely at what dynamical systems we can model with any given technique,

groupoids fare slightly worse than Cuntz–Pimsner techniques. Even the best techniques we have given
totally deficient answers in many examples. The cheery news is based on examples and work by Alex
Mundey [Mun20].

In this lecture, all groupoids are locally-compact and Hausdorff.

12.1 Iterated function systems

Definition 12.1. A topological quiver is a tuple E = (E0, E1, r, s, λ), where:

• E0 and E1 are second-countable, locally-compact Hausdorff spaces.
• r : E1 → E0 is a continuous map.
• s : E1 → E0 is a continuous and open map.
• λ is an s-system. (c.f. Definition 9.1).

If s is in addition a locally homeomorphism. Then E is also called a topological graph.

Definition and Lemma 12.2 (Hutchinson). Let (X, d) be a complete metric space. Let Γ = {γ1, . . . , γn}
be a finite collection of contractions X → X. There exists a unique compact subset A ⊆ X such that

A =
⋃

γ∈Γ
γ(A).

We call (A,Γ) an iterated function system.

Definition 12.3. Let (A,Γ) be an iterated function system.

• The set of critical points is
C :=

⋃
γ ̸=γ

′

γ(A) ∩ γ′(A).

• The set of branch points is

B := {y ∈ C | y = γ(n) = γ′(n) for some γ, γ′ ∈ Γ}.

Example 12.4. Let A be the Sierpiński triangle. That is, the iterated function system given by X = R2

and Γ = {γ1, γ2, γ3}, where

γ1(x, y) :=
(
x

2 ,
y

2

)
, γ2(x, y) :=

(
x+ 1

4 ,
2y +

√
3

4

)
, γ3 :=

(
x+ 1

2 ,
y

2

)
.

The set of critical points C consists of three points(1
2 , 0

)
,

(
1
4 ,
√

3
4

)
,

(
3
4 ,
√

3
4

)
.

Example 12.5. Let A = [0, 1].
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Figure 12.1: The Sierpiński triangle

(a) Let γ1(x) := x
2 , γ2(x) := 1+x

2 . The only critical point is 1
2 .

(b) Instead, if γ1(x) := x
2 , γ2(x) := 1−x

2 . Then 1
2 is no longer a critical point. Instead, it is a branch

point.

The (co)graphs
Graph(Γ) := {(γ(x), x) | x ∈ A, γ ∈ Γ}

of the corresponding iterated function systems are shown in Figure 12.2.

Graph(γ1)

Graph(γ2)

1

1

1
2

(a) γ1(x) = x
2 , γ2(x) = 1+x

2 .

Graph(γ1)

Graph(γ2)

1

1
2

(b) γ1(x) = x
2 , γ2(x) = 1−x

2 .

Figure 12.2: Iterated function systems on [0,1]

Lemma 12.6. Let π1, π2 : Graph(Γ)→ A be the projection onto the first or second entry. Then:

• π1 is continuous but usually not open.
• π2 is open but usually not locally injective.

Definition 12.7. The branch number of an iterated function system (A,Γ) is

b : Graph(Γ)→ N, b(x, y) := #{γ ∈ Γ | x = γ(y)}.

Proposition 12.8. Let (A,Γ) be an iterated function system. Set λ := {λy}y∈A where

λy(f)(y) := 1
|Γ|

∑
(x,y)∈Graph(Γ)

b(x, y)f(x, y) = 1
|Γ|

∑
γ∈Γ

f(γ(y), y)

for f ∈ C(Graph(Γ)).
Then E := (E0 = A, E1 = Graph(Γ), r = π1, s = π2, λ) is a topological quiver.
If in addition π2 is locally injective. Then E is a topological graph.
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12.2 C*-algebras of iterated function systems

12.2.1 Topological graph method

There is a close relation between topological graphs and groupoids. I would expect to know more about
this from Yufan’s talk next week.

Let E be a topological graph. Define the infinite path space

E≤∞ := E∞∐ ∞∐
k=0

Ek,

where
Ek := {(x1, . . . , xk) ∈ E × . . .× E︸ ︷︷ ︸

k copies

| s(xi) = r(xi+1)}.

Define the boundary path space

∂E := E∞∐ ∞∐
k=0
{x ∈ Ek | r(x) ∈ E0

sing}

where E0
sing denotes the set of singular vertices. A precise definition can be found in, e.g. [Mun20,

Definition 3.1.9]. All these spaces are equipped with a topology.

Theorem 12.9 ([KL17]). The left shift σ : E≤∞ → E≤∞ is a partial local homeomorphism, and restricts
to a partial local homeomorphism σ : ∂E \ E0

sing → ∂E.

We build two groupoids from σ; this is a standard construction. For σ : X → X a partial local
homeomorphism, define the Deaconu–Renault groupoid G(X,σ) ⇒ X:

G(X,σ) := {(x,m− n, y) | m,n ∈ N, x ∈ Dom σm, y ∈ Dom σn, σm(x) = σn(y)}.

together with the (obvious) operations

s(x,m− n, y) := y, r(x,m− n, y) := x,

(x,m− n, y) · (y, n− k, z) := (x,m− k, z), (x,m− n, y)−1 := (y, n−m,x).

Definition 12.10. Let E be a topological graph.

• The path groupoid is the Deaconu–Renault groupoid T GE := G(E≤∞, σ).
• The boundary path groupoid is the Deaconu–Renault groupoid GE := G(∂E, σ).

We will see later that these groupoids give rise to a Toeplitz–Pimsner algebra and a Cuntz–Pimsner
algebra.

12.2.2 Topological quiver method

Let (A,Γ) be a iterated function system. We have seen in Proposition 12.8 that iterated function systems
give rise to topological quivers. The following aims at defining C*-algebras for such objects, and finding
an underlying groupoid model.

Define
Ã := {(x1, x2, . . .) ∈ AN | xi ∈ Γxi+1}.

Here by Γxi+1 we mean {γxi+1 | γ ∈ Γ}. The shift map

σ̃ : Ã→ Ã, σ̃(x1, x2, . . .) := (x2, x3, . . .)

is continuous, open and surjective. A map γ ∈ Γ lifts to a map

γ̃ : Ã→ Ã, γ̃(x1, x2, . . .) := (γ(x1), x1, x2, . . .).

Let Γ̃ := {γ̃ | γ ∈ Γ}. Then (Ã, Γ̃) is called the “inverse lifted system” of (A,Γ) by Mundey.
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Proposition 12.11 (Mundey). • If (A,Γ) is branch-separated. That is,

Graph(γ) ∩Graph(γ′) = ∅ if γ ̸= γ′.

Then Ã is totally-disconnected.
• If A has no isolated points. Then Ã is Cantor.
• There is a 1–1 correspondence

{x ∈ Ã | σ̃ is not locally injective} ∼←→ {Branch points of A}.

Theorem 12.12 (Mundey). (A,Γ) is branch-separated iff the Deaconu–Renault groupoid G(Ã, σ̃) is étale.

As an r-discrete groupoid admits a Haar system iff it is étale. The Theorem aboves states that we
are unable to find an étale groupoid model for the C*-algebra of an iterated function system, unless it is
branch-separated. The Example as in Figure 12.2a is branch-separated, while Figure 12.2b displays a
negative case.

12.2.3 Cuntz–Pimsner algebras

Now we revisit the C*-algebra of a topological quiver, which shall be defined as a Cuntz–Pimsner algebra
as follows.

Let E = (E0, E1, r, s, λ) be a topological quiver. Let A := C0(E0). Complete Cc(E1) into a
C*-correspondence over A by setting

(aξb)(x) := a(r(x))ξ(x)b(s(x)),

⟨ξ, η⟩(x) :=
∫

E
1
ξ̄(y)η(y)λx(y),

for a, b ∈ A and ξ, η ∈ Cc(E1). The completion of Cc(E1) is denoted by XE . The topological quiver
algebra of E is defined as the Cuntz–Pimsner algebra OXE

of the C*-correspondence XE .
Now let X := C(Graph(Γ)). It becomes a C*-correspondence over C(A) with the following structure

maps

⟨f, g⟩C(A) :=
∑
γ∈Γ

f̄g(γ(x), x),

(afb)(x, y) := a(x)f(x, y)b(y),

for f, g ∈ X and a, b ∈ C(A).
From the C*-correspondence X above one constructs a Cuntz–Pimsner algebra, call it OA,Γ; and a

Toeplitz–Pimsner algebra, call it TA,Γ. Mundey showed that they are isomorphic to the topological quiver
algebras given by the topological quiver in Proposition 12.8. Moreover:

Theorem 12.13 ([Yee06]). If E is a topological graph. Then

C∗(T GE) ≃ TXE
, C∗(GE) ≃ OXE

,

where the left-hand sides are the Deaconu–Renault groupoids of topological graphs (Definition 12.10) and
the right-hand sides are the topological quiver algebras.

Theorem 12.14. If (A,Γ) is branch-separated and satisfies the “open set condition”. Then the topological
quiver algebra OA,Γ is isomorphic to the Cuntz algebra O|Γ|. The proof is by classification.

Example 12.15. The non-branch-separated cases are very problematic. For the case in Figure 12.2b, the
topological quiver algebra is isomorphic to O∞.
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December 13, 2022

Graph groupoids and Doplicher–Roberts algebras
Speaker: Yufan Ge (Leiden University)

The main references are [Kum+97; MRS92; MRW87].

13.1 Graph groupoids

Definition 13.1. A (directed) graph is a quadruple G = (V,E, r, s), where V and E are two sets
and r, s : E ⇒ V are maps between them. An element in V is called a vertice and an element in E is
called an edge. The maps r and s are called the range and source maps. We assume that s : E → V is
surjective.

We say that G is row-finite (resp. column-finite), if s−1(v) (resp. r−1(v)) is finite for every v ∈ V .
We say that G is locally-finite, if G is both row-finite and column-finite.

A pointed graph is a graph G together with a distinguished vertex v ∈ V .

Definition 13.2. Let G = (V,E, r, s) be a pointed graph with distinguished vertex v ∈ V . We use the
following notations:

• P(G) is the set of infinite paths in G. That is, an infinite sequence α = (. . . , αi+1, αi, . . . , α2, α1) ∈
EN such that s(αi+1) = r(αi) for all i. The source of α is defined to be s(α) := s(α1).

• P(G, v) is the set of infinite paths in G with source v. That is,

P(G, v) := {α ∈ P(G) | s(α) = v}.

• F(G) is the set of finite paths in G. Let α = (αn, . . . , α1) ∈ F(G). We define |α| := n.
• F(G, v) is the set of finite paths in G with source v.

Let G = (V,E, r, s) be a graph. We equip E with the discrete topology, and equip P(G) with the
induced product topology.

Definition and Lemma 13.3. Let α ∈ F(G). Define the cylinder set

Z(α) := {β ∈ P(G) | βi = αi for all i ≤ |α|}.

Then {Z(α)}α∈F(G) is a topological basis of P(G).

Proof. It suffices to check that

Z(α) ∩ Z(β) =


Z(α) α ≥ β;
Z(β) β ≥ α;
∅ otherwise,

where α ≥ β if αi = βi for all i ≤ |β|.

Assume that G is row-finite. Then with the topology described above, Z(α) ≃ ∏k∈NEk(r(α)) where

Ek(v) := {α ∈ F(G) | s(α) = v}.

Each Ek(r(α)) is finite. So Z(α) is compact. Therefore:

Corollary 13.4. Let G be a row-finite graph. The cylinder sets Z(α) form a topological basis of compact
open sets of P(G). With this topology, P(G) is locally-compact, σ-compact and Hausdorff.

54



Now we associate a groupoid G(G) to a row-finite graph G. Define the shift equivalence on E with
lag k ∈ Z:

x ∼k y iff there exists N ∈ N such that xi = yi+k for all i ≥ N .

The graph groupoid is G(G) ⇒ P(G) where

G(G) := {(x, k, y) ∈ P(G)× Z× P(G) | x ∼k y},

with

s(x, k, y) := y, r(x, k, y) := x, (x, k, y)(y, l, z) := (x, k + l, z), (x, k, y)−1 := (y,−k, x).

You should be able to check that this is another instance of a Deaconu–Renault groupoid, and in fact the
same construction as in Adam’s talk (Definition 12.10).

We also define the pointed version G(G, v) for a pointed graph (G, v): this is the restriction of G(G)
to the set P(G, v).

Now we describe the topology of G(G).

Definition and Lemma 13.5. Let

Z(α, β) := {(x, k, y) ∈ F(G)× Z×F(G) | x ∈ Z(α), y ∈ Z(β), k = |β| − |α|, xi = yi+α for i ≥ |α|}.

Then {Z(α, β)}α,β form a basis of a locally-compact Hausdorff topology on G(G). With respect to this
topology: G(G) is second-countable, r-discrete; every Z(α, β) is a local bisection; the counting measure
on each fibre forms a Haar system.

Definition 13.6 (Cofinal). Let G be a graph. Then v ∈ V is cofinal if for every x ∈ P(G), there
exists α ∈ F(G) with s(α) = v and r(α) = xn for some n ∈ N.

Theorem 13.7. Let G be a row-finite graph with a distinguished vertex v ∈ V which is cofinal. Let N :=
P(G, v). Then N is a transversal in G(G), and G(G, v) ≃ G(G)N

N .
The characteristic function 1N ∈ Cc(G(G)) is a full projection in C∗(G(G)), and the inclusion Cc(G(G)N

N ) ↪→
Cc(G(G)) induces an isomorphism C∗(G(G, v)) ≃ 1N C∗(G(G))1N .

Sketch of the proof. Notice that 1N satisfies 1N ∗ 1N = 1N and 1∗
N = 1N . And Cc(G(G)N

N ) ↪→ C∗(G(G))
is a *-homomorphism onto 1N ∗ C∗(G(G)) ∗ 1N .

The cofinality of v implies that for every x ∈ P(G), there exists α ∈ F(G) such that s(α) = v
and r(α) = xn. Define x′ := (. . . , xn+2, xn+1). Then (x′α, n− |α|, x) ∈ G(G) with range x′α ∈ N . Here

x′α := (. . . , xn+2, xn+1, αn, αn−1, . . . , α1).

This implies that N meets every orbit of P(G). Therefore Cc(G(G)N ) can be completed into an
imprimitivity bimodule between C∗(G(G)) and C∗(G(G)N

N ). The inner products are given by:

⟨f, g⟩C∗(G(G)N
N ) = f∗ ∗ g,

C∗(G(G))⟨f, g⟩ = f ∗ g∗.

The proof is finished by showing that for every f ∈ Cc(G(G)N
N ), the norms of f are equal as an element

in C∗(G(G)N
N ) and as an element in C∗(G(G)).
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13.1.1 Graph groupoid C*-algebras

Let G(G) be the groupoid of a graph G = (V,E). Its groupoid C*-algebra C∗(G(G)) has the following
properties.

• Universal property. C∗(G(G)) is generated by the Cuntz–Krieger E-family given by the graph G =
(E, V ).

• If G is locally-finite and irreducible — that is, there is a finite path joining every two given vertices.
Then C∗(G(G)) is simple.

• K-theory. If G is row-finite. Then

K0(C∗(G(G))) = coker(1−At
G), K0(C∗(G(G))) = ker(1−At

G),

for the edge matrix At
G given by the graph G.

13.2 Doplicher–Roberts algebras

Let K be a compact group. We fix a unitary representation (ρ,Hρ). We write ι for the trivial
representation.

Let ρn denote the representation of n-fold tensor product of ρ on H n := H ⊗n
ρ . Let (ρm, ρn) denote the

space of intertwiners, that is, bounded operators T : H m
ρ →H n

ρ intertwining ρm and ρn. If T ∈ (ρm, ρn),
then T ⊗ 1 ∈ (ρm+1, ρn+1); this allows us to define the inductive limit⋃

m,n∈N
(ρm, ρn)

generated by (ρm, ρn) −⊗1
↪→ (ρm+1, ρn+1).

In particular, any pair of operators in the inductive limit are composable, turning it into an algebra.
It is a *-algebra with the involution T 7→ T ∗.

Definition 13.8. The Doplicher–Roberts algebra Oρ is the C*-envelope of the inductive limit *-algebra
described above:

Oρ :=
⋃

m,n∈N
(ρm, ρn).

We would like to construct a groupoid model for Oρ; the construction is based on [MRS92] and
[Kum+97]. In [MRS92], the authors constructed a Cuntz–Krieger algebra, such that the Doplicher–
Roberts algebra Oρ embeds into it as a corner. In [Kum+97], the authors associate to every locally-finite
graph a locally-compact groupoid such that its groupoid C*-algebra is isomorphic to the universal
C*-algebra generated by the Cuntz–Krieger E-family of the graph (sometimes also called the graph
C*-algebra). In this section, we construct explicitly this graph Gρ, and show that C∗(G(Gρ, ι)) ≃ Oρ.
This allows for K-theory computations in simple cases.

Definition 13.9. Define a pointed graph Gρ = (Vρ, Eρ) as follows.

• The set of vertices Vρ is the set of unitary equivalence classes of irreps of K:

Vρ := K̂.

• Given v, w ∈ Vρ. The number of edges from v to w is given by the number of copies of w in ρ⊗ v.
• The distinguished vertex is the trivial representation ι.
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Let (π2,H2) be a unitary representation of K, and assume that it is a direct summand of (π1 ⊗
ρ,H1 ⊗ Hρ) for another representation (π1,H1) and the fixed representation (ρ,Hρ). Then there
exists an edge x from π1 to π2 in the graph Gρ (c.f. Definition 13.9). In particular, x gives a partial
isometry Tx : H2 →H1 ⊗Hρ intertwining π2 and π1 ⊗ ρ.

In general, for every unitary representation (π,Hπ) we have

Hπ ⊗Hρ =
⊕

x∈s
−1(π)

TxHi =
⊕

x∈s
−1(π)

TxT
∗
x Hπ ⊗Hρ.

Let x1, x2, . . . , xn ∈ E with s(xi+1) = r(xi) for all i. Then x = (xn, . . . , x2, x1) is a path in Gρ. We
define

Tx := (T1 ⊗ 1n−1)(T2 ⊗ 1n−2) · · · (Tn−1 ⊗ 1)Tn,

where 1k is the identity operator on H k
ρ . Then Tx is a partial isometry Hr(xn) → H n

ρ . Every path x
with s(x) = ι generates a decomposition of H n

ρ , and we have

H n
ρ =

⊕
s(x)=ι

x∈F(Gρ)

TxT
∗
x (H n

ρ ).

Proposition 13.10. The family

{TxT
∗
y | |x| = m, |y| = n, s(x) = s(y) = ι, r(xm) = r(yn)}

form a basis for (ρm, ρn), and each element TxT
∗
y is a partial isometry.

Theorem 13.11. Oρ ≃ C∗(G(Gρ, ι)).

Lemma 13.12. Let (ρ,Hρ) be a faithful unitary representation of a compact group K. Assume
that ρ(K) ⊆ SU(Hρ). Then the graph Gρ is locally-finite and irreducible. Hence Oρ is simple.

Proof. See [Kum+97, Theorem 7.1] for more details.
We need to show that the graph Gρ is irreducible. This happens if:

(a) Every π ∈ K̂ can be reached from ι in Gρ.

(b) ι can be reached from every π ∈ K̂.

(a) is equivalent to saying that the set

R := {π ∈ K̂ | π is a summand of ρn for some n ∈ N}

is closed under conjugation and tensor product. Since ρ is faithful, R is automatically closed under tensor
product. It remains to show that the conjugate representation ρ̄ ∈ R.

Choose a basis {e1, . . . , en} for Hρ. Since ρ(K) ⊆ SU(Hρ), we have

ρ(K)|e1∧e2∧···∧en
= 1.

So ρn contains a copy of ι. The orthogonal relations of characters imply that (χρ
n , χι) ≥ 1. This, however,

implies that

(χ
ρ

n−1 , χρ̄) = (χn−1
ρ , χρ) = (χn

ρ , 1) = (χρ
n , χι) ≥ 1.

So ρ̄ is contained in ρn−1. So ρ̄ ∈ R.
Hence any π ∈ K̂ is a summand in ρn for some n. Then ι is a summand of π ⊗ π̄, and hence a

summand of π ⊗ ρn. Then (b) is justified. Every π ⊗ ρ has only finitely many irreducible summands.
So Gρ is row-finite. Reversing all the arrows in Gρ gives the conjugate graph Gρ̄, which is also row-finite
by a similar proof. Therefore, Gρ is column-finite.
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13.2.1 K-theory of Doplicher–Roberts algebras

We are able to describe the K-theory of Oρ. Recall that:

Lemma 13.13. If p is a full projection in a C*-algebra A. Then K0(A) ≃ K0(pAp).

By Lemma 13.12, every π ∈ K̂ is a summand of ρn for some n.

Proposition 13.14. Denote by eπ the projection of H n
ρ onto the summand Hπ. Then eπ is a projection

in (ρn, ρn), hence defines a class [eπ] in K0(Oρ).

• The map
K̂ → K0(Oρ), π 7→ [eπ]

is well-defined.
• K0(Oρ) is generated as an abelian group by the elements {[eπ] | π ∈ K̂} subject to the relation

[eπ] =
d∑

i=1
[eπi

], for π ⊗ ρ =
d⊕

i=1
πi.

Remark 13.15. The proof is similar to that of [NL22, Theorem 12.13], given by Yufan in a talk on the
K-theory of graph C*-algebras.
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